

Brian 2 hears

[image: _images/brianhearslogo.png]
Brian hears (for Brian 2) is an auditory modelling library for Python. It is built as an extension to the
neural network simulator package Brian 2, but can also be used on its own.

Note that this is a direct update of the original Brian hears package for Brian 1.
Some features available in Brian 2 will not work with this package, see Update for Brian 2.

Contents

	Introduction

	Sounds

	Filter chains

	Connecting with Brian

	Plotting

	Online computation

	Buffering interface

	Library

	Head-related transfer functions

	Reference documentation

	Examples

Introduction

Download and installation

If you do not already have a recent version of
Brian2 [http://brian2.readthedocs.io/], please install it following the
installation instructions in its documentation [https://brian2.readthedocs.io/en/stable/introduction/install.html].

To download and install Brian2Hears, use pip:

pip install brian2hears

Getting started

Brian hears is primarily designed for generating and manipulating sounds, and applying
large banks of filters. We import the package by writing:

from brian2 import *
from brian2hears import *

Then, for example, to generate a tone or a whitenoise we would write:

sound1 = tone(1*kHz, .1*second)
sound2 = whitenoise(.1*second)

These sounds can then be manipulated in various ways, for example:

sound = sound1+sound2
sound = sound.ramp()

If you have the pygame [http://www.pygame.org] package installed, you can
also play these sounds:

sound.play()

We can filter these sounds through a bank of 3000 gammatone filters covering
the human auditory range as follows:

cf = erbspace(20*Hz, 20*kHz, 3000)
fb = Gammatone(sound, cf)
output = fb.process()

The output of this would look something like this (zoomed into one region):

[image: _images/cochleagram.png]
Alternatively, if we’re interested in modelling auditory nerve fibres, we could
feed the output of this filterbank directly into a group of neurons defined with
Brian:

Half-wave rectification and compression [x]^(1/3)
ihc = FunctionFilterbank(fb, lambda x: 3*clip(x, 0, Inf)**(1.0/3.0))
Leaky integrate-and-fire model with noise and refractoriness
eqs = '''
dv/dt = (I-v)/(1*ms)+0.2*xi*(2/(1*ms))**.5 : 1 (unless refractory)
I : 1
'''
anf = FilterbankGroup(ihc, 'I', eqs, reset='v=0', threshold='v>1', refractory=5*ms)

This model would give output something like this:

[image: _images/auditory-nerve-fibre-rasterplot.png]
The human cochlea applies the equivalent of 3000 auditory
filters, which causes a technical problem for modellers which this package is
designed to address. At a typical sample rate, the output of 3000 filters would
saturate the computer’s RAM in a few seconds. To deal with this, we use
online computation, that is we only ever keep in memory the output of the
filters for a relatively short duration (say, the most recent 20ms), do our
modelling with these values, and then discard them. Although this requires that
some models be rewritten for online rather than offline computation, it allows
us to easily handle models with very large numbers of channels. 3000 or 6000 for
human monaural or binaural processing is straightforward, and even much larger
banks of filters can be used (for example, around 30,000 in
Goodman DFM, Brette R (2010). Spike-timing-based computation in sound localization. PLoS Comput. Biol. 6(11): e1000993. doi:10.1371/journal.pcbi.1000993 [http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000993]).
Techniques for online computation are discussed below in the section
Online computation.

Brian hears consists of classes and functions
for defining Sounds, Filter chains, cochlear models, neuron models
and Head-related transfer functions.
These classes
are designed to be modular and easily extendable. Typically, a model will
consist of a chain starting with a sound which is plugged into a chain of
filter banks, which are then plugged into a neuron model.

The two main classes in Brian hears are Sound and Filterbank,
which function very similarly. Each consists of multiple channels (typically
just 1 or 2 in the case of sounds, and many in the case of filterbanks,
but in principle any number of channels is possible for either). The difference
is that a filterbank has an input source, which can be either a sound or
another filterbank.

All scripts using Brian hears should start by importing the Brian and Brian
hears packages as follows:

from brian2 import *
from brian2hears import *

See also

Reference documentation for Brian2Hears, which
covers everything in this overview in detail, and more. List of
examples of using Brian hears.

Update for Brian 2

For users of Brian hears for Brian 1, note that the following no longer works in Python 2 (although
it will work in Python 3):

sound = whitenoise(100*ms)
sound[:10*ms] # to get the first 10 ms of a sound

This is because of a change in the way units are handled between Brian 1 and Brian 2. To get the same
effect, you can write:

sound = whitenoise(100*ms)
sound[slice(0*ms, 10*ms)] # to get the first 10 ms of a sound

This will work in both Python 2 and 3.

For users of Brian 2, note that the following will not work with FilterbankGroup:

	store() and restore() will not work unless you are calling store() at time t=0.

	The standalone mode of Brian 2 will not work.

Sounds

Sounds can be loaded from a WAV or AIFF file with the loadsound()
function (and saved with the savesound() function or Sound.save()
method), or by initialising with a filename:

sound = loadsound('test.wav')
sound = Sound('test.aif')
sound.save('test.wav')

Various standard types of sounds can also be constructed, e.g. pure tones,
white noise, clicks and silence:

sound = tone(1*kHz, 1*second)
sound = whitenoise(1*second)
sound = click(1*ms)
sound = silence(1*second)

You can pass a function of time or an array to initialise a sound:

Equivalent to Sound.tone
sound = Sound(lambda t:sin(50*Hz*2*pi*t), duration=1*second)

Equivalent to Sound.whitenoise
sound = Sound(randn(int(1*second*44.1*kHz)), samplerate=44.1*kHz)

Multiple channel sounds can be passed as a list or tuple of filenames,
arrays or Sound objects:

sound = Sound(('left.wav', 'right.wav'))
sound = Sound((randn(44100), randn(44100)), samplerate=44.1*kHz)
sound = Sound((Sound.tone(1*kHz, 1*second),
 Sound.tone(2*kHz, 1*second)))

A multi-channel sound is also a numpy array of shape (nsamples, nchannels),
and can be initialised as this (or converted to a standard numpy array):

sound = Sound(randn(44100, 2), samplerate=44.1*kHz)
arr = array(sound)

Sounds can be added and multiplied:

sound = Sound.tone(1*kHz, 1*second)+0.1*Sound.whitenoise(1*second)

For more details on combining and operating on sounds, including shifting them
in time, repeating them, resampling them, ramping them, finding and setting
intensities, plotting spectrograms, etc., see Sound.

Sounds can be played using the play() function or Sound.play() method:

play(sound)
sound.play()

Sequences of sounds can be played as:

play(sound1, sound2, sound3)

The number of channels in a sound can be found using the nchannels
attribute, and individual channels can be extracted using the
Sound.channel() method, or using the left and right attributes
in the case of stereo sounds:

print sound.nchannels
print amax(abs(sound.left-sound.channel(0)))

As an example of using this, the following swaps the channels in a stereo sound:

sound = Sound('test_stereo.wav')
swappedsound = Sound((sound.right, sound.left))
swappedsound.play()

The level of the sound can be computed and changed with the sound.level
attribute. Levels are returned in dB which is a special unit in Brian hears.
For example, 10*dB+10 will raise an error because 10 does not have
units of dB. The multiplicative gain of a value in dB can be computed with
the function gain(level). All dB values are measured as RMS dB SPL assuming
that the values of the sound object are measured in Pascals. Some examples:

sound = whitenoise(100*ms)
print sound.level
sound.level = 60*dB
sound.level += 10*dB
sound *= gain(-10*dB)

Filter chains

The standard way to set up a model based on filterbanks is to start with a
sound and then construct a chain of filterbanks that modify it, for example
a common model of cochlear filtering is to apply a bank of gammatone filters,
and then half wave rectify and compress it (for example, with a 1/3 power law).
This can be achieved in Brian hears as follows (for 3000 channels in the
human hearing range from 20 Hz to 20 kHz):

cfmin, cfmax, cfN = 20*Hz, 20*kHz, 3000
cf = erbspace(cfmin, cfmax, cfN)
sound = Sound('test.wav')
gfb = GammatoneFilterbank(sound, cf)
ihc = FunctionFilterbank(gfb, lambda x: clip(x, 0, Inf)**(1.0/3.0))

The erbspace() function constructs an array of centre frequencies on the
ERB scale. The GammatoneFilterbank(source, cf) class creates a bank
of gammatone filters with inputs coming from source and the centre
frequencies in the array cf. The FunctionFilterbank(source, func)
creates a bank of filters that applies the given function func to the inputs
in source.

Filterbanks can be added and multiplied, for example for creating a linear and
nonlinear path, e.g.:

sum_path_fb = 0.1*linear_path_fb+0.2*nonlinear_path_fb

A filterbank must have an input with either a single channel or an equal number
of channels. In the former case, the single channel is duplicated for each of
the output channels. However, you might want to apply gammatone filters to a
stereo sound, for example, but in this case it’s not clear how to duplicate
the channels and you have to specify it explicitly. You can do this using the
Repeat, Tile, Join and Interleave
filterbanks. For example, if the input is a stereo sound
with channels LR then you can get an output with channels LLLRRR or LRLRLR
by writing (respectively):

fb = Repeat(sound, 3)
fb = Tile(sound, 3)

To combine multiple filterbanks into one, you can either
join them in series or interleave them, as follows:

fb = Join(source1, source2)
fb = Interleave(source1, source2)

For a more general (but more complicated) approach, see
RestructureFilterbank.

Two of the most important generic filterbanks (upon which many of the others
are based) are LinearFilterbank and FIRFilterbank. The former
is a generic digital filter for FIR and IIR filters. The latter is specifically
for FIR filters. These can be implemented with the former, but the
implementation is optimised using FFTs with the latter (which can often be
hundreds of times faster, particularly for long impulse responses). IIR filter
banks can be designed using IIRFilterbank which is based on the
syntax of the iirdesign scipy function.

You can change the input source to a Filterbank by modifying its
source attribute, e.g. to change the input sound of a filterbank fb
you might do:

fb.source = newsound

Note that the new source should have the same number of channels.

You can implement control paths (using the output of one filter chain path
to modify the parameters of another filter chain path) using
ControlFilterbank (see reference documentation for more details).
For examples of this in action, see the following:

	Time varying filter (1).

	Time varying filter (2).

	Compressive Gammachirp filter (DCGC).

Connecting with Brian

To create spiking neuron models based on filter chains, you use the
FilterbankGroup class. This acts exactly like a standard Brian
NeuronGroup [https://brian2.readthedocs.io/en/stable/reference/brian2.groups.neurongroup.NeuronGroup.html#brian2.groups.neurongroup.NeuronGroup] except that you give a source
filterbank and choose a state variable in the target equations for the output
of the filterbank. A simple auditory nerve fibre model would take the inner hair
cell model from earlier, and feed it into a noisy leaky integrate-and-fire model
as follows:

Inner hair cell model as before
cfmin, cfmax, cfN = 20*Hz, 20*kHz, 3000
cf = erbspace(cfmin, cfmax, cfN)
sound = Sound.whitenoise(100*ms)
gfb = Gammatone(sound, cf)
ihc = FunctionFilterbank(gfb, lambda x: 3*clip(x, 0, Inf)**(1.0/3.0))
Leaky integrate-and-fire model with noise and refractoriness
eqs = '''
dv/dt = (I-v)/(1*ms)+0.2*xi*(2/(1*ms))**.5 : 1 (unless refractory)
I : 1
'''
G = FilterbankGroup(ihc, 'I', eqs, reset='v=0', threshold='v>1', refractory=5*ms)
Run, and raster plot of the spikes
M = SpikeMonitor(G)
run(sound.duration)
plot(M.t/ms, M.i, '.')
show()

And here’s the output:

[image: _images/auditory-nerve-fibre-rasterplot.png]

Plotting

Often, you want to use log-scaled axes for frequency in plots, but the
built-in matplotlib axis labelling for log-scaled axes doesn’t work well for
frequencies. We provided two functions (log_frequency_xaxis_labels() and
log_frequency_yaxis_labels()) to automatically set useful axis labels.
For example:

cf = erbspace(100*Hz, 10*kHz)
...
semilogx(cf, response)
axis('tight')
log_frequency_xaxis_labels()

Online computation

Typically in auditory modelling, we precompute the entire output of each
channel of the filterbank (“offline computation”), and then work with that.
This is straightforward,
but puts a severe limit on the number of channels we can use or the length of
time we can work with (otherwise the RAM would be quickly exhausted).
Brian hears allows us to use a very large number of channels in filterbanks,
but at the cost of only storing the output of the filterbanks for a relatively
short period of time (“online computation”).
This requires a slight change in the way we use the
output of the filterbanks, but is actually not too difficult. For example,
suppose we wanted to compute the vector of RMS values for each channel of the
output of the filterbank. Traditionally, or if we just use the syntax
output = fb.process() in Brian hears, we have an array output of
shape (nsamples, nchannels). We could compute the vector of RMS values as:

rms = sqrt(mean(output**2, axis=0))

To do the same thing with online computation, we simply store a vector of the
running sum of squares, and update it for each buffered segment as it is
computed. At the end of the processing, we divide the sum of squares by the
number of samples and take the square root.

The Filterbank.process()
method allows us to pass an optional function f(output, running) of
two arguments. In this case, process() will first call
running = f(output, 0) for the first buffered segment output. It will
then call running = f(output, running) for each subsequent segment. In
other words, it will “accumulate” the output of f, passing the output of
each call to the subsequent call. To compute the vector of RMS values then,
we simply do:

def sum_of_squares(input, running):
 return running+sum(input**2, axis=0)

rms = sqrt(fb.process(sum_of_squares)/nsamples)

If the computation you wish to perform is more complicated than can be
achieved with the process() method, you can derive a class
from Filterbank (see that class’ reference documentation for more
details on this).

Buffering interface

The Sound and Filterbank classes
(and all classes derived from them) all implement the same buffering
mechanism. The purpose of this is to allow for efficient processing of
multiple channels in buffers. Rather than precomputing the application of
filters to all channels (which for large numbers of channels or long sounds
would not fit in memory), we process small chunks at a time. The entire design
of these classes is based on the idea of buffering, as defined by the base
class Bufferable (see section Class diagram).
Each class
has two methods, buffer_init() to initialise the buffer, and
buffer_fetch(start, end) to fetch the portion of the buffer from samples
with indices from start to end (not including end as standard for
Python). The buffer_fetch(start, end) method should return a 2D array of
shape (end-start, nchannels) with the buffered values.

From the user point of view, all you need to do, having set up a chain of
Sound and Filterbank objects, is to call buffer_fetch(start, end)
repeatedly. If the output of a Filterbank is being plugged into a
FilterbankGroup object, everything is handled automatically. For cases
where the number of channels is small or the length of the input source is short,
you can use the Filterbank.process() method to automatically
handle the initialisation and repeated application of buffer_fetch.

To extend Filterbank, it is often sufficient just to implement the
buffer_apply(input) method. See the documentation for Filterbank
for more details.

Library

Brian hears comes with a package of predefined filter classes to be used as
basic blocks by the user. All of them are implemented as filterbanks.

First, a series of standard filters widely used in audio processing are available:

	Class

	Descripition

	Example

	IIRFilterbank

	Bank of low, high, bandpass or bandstop filter of type Chebyshef, Elliptic, etc…

	IIR filterbank

	Butterworth

	Bank of low, high, bandpass or bandstop Butterworth filters

	Butterworth filters

	LowPass

	Bank of lowpass filters of order 1

	Cochleagram

Second, the library provides linear auditory filters developed to model the
middle ear transfer function and the frequency analysis of the cochlea:

	Class

	Description

	Example

	MiddleEar

	Linear bandpass filter, based on middle-ear frequency response properties

	Spiking output of the Tan&Carney model

	Gammatone

	Bank of IIR gammatone filters (based on Slaney implementation)

	Gammatone filters

	ApproximateGammatone

	Bank of IIR gammatone filters (based on Hohmann implementation)

	Approximate Gammatone filters

	LogGammachirp

	Bank of IIR gammachirp filters with logarithmic sweep (based on Irino implementation)

	Logarithmic Gammachirp filters

	LinearGammachirp

	Bank of FIR chirp filters with linear sweep and gamma envelope

	Linear Gammachirp filters

	LinearGaborchirp

	Bank of FIR chirp filters with linear sweep and gaussian envelope

	

Finally, Brian hears comes with a series of complex nonlinear cochlear models
developed to model nonlinear effects such as filter bandwith level dependency,
two-tones suppression, peak position level dependency, etc.

	Class

	Description

	Example

	DRNL

	Dual resonance nonlinear filter as described in Lopez-Paveda and Meddis, JASA 2001

	Dual resonance nonlinear filter (DRNL)

	DCGC

	Compressive gammachirp auditory filter as described in Irino and Patterson, JASA 2001

	Compressive Gammachirp filter (DCGC)

	TanCarney

	Auditory phenomenological model as described in Tan and Carney, JASA 2003

	Spiking output of the Tan&Carney model

	ZhangSynapse

	Model of an inner hair cell – auditory nerve synapse (Zhang et al., JASA 2001)

	Spiking output of the Tan&Carney model

Head-related transfer functions

You can work with head-related transfer functions (HRTFs) using the three
classes HRTF (a single pair of left/right ear HRTFs),
HRTFSet (a set of HRTFs, typically for a single individual), and
HRTFDatabase (for working with databases of individuals). At the
moment, we have included only one HRTF database, the IRCAM_LISTEN
public HRTF database. There is also one artificial HRTF database,
HeadlessDatabase used for generating HRTFs of artifically introduced ITDs.

An example of loading the IRCAM database, selecting a subject and plotting
the pair of impulse responses for a particular direction:

hrtfdb = IRCAM_LISTEN()
hrtfset = hrtfdb.load_subject(1002)
hrtf = hrtfset(azim=30, elev=15)
plot(hrtf.left)
plot(hrtf.right)
show()

HRTFSet has a set of coordinates, which can be
accessed via the coordinates attribute, e.g.:

print hrtfset.coordinates['azim']
print hrtfset.coordinates['elev']

You can also generated filterbanks associated either to an HRTF or
an entire HRTFSet. Here is an example of doing this with the IRCAM
database, and applying this filterbank to some white noise and plotting the
response as an image:

Load database
hrtfdb = IRCAM_LISTEN()
hrtfset = hrtfdb.load_subject(1002)
Select only the horizontal plane
hrtfset = hrtfset.subset(lambda elev: elev==0)
Set up a filterbank
sound = whitenoise(10*ms)
fb = hrtfset.filterbank(sound)
Extract the filtered response and plot
img = fb.process().T
img_left = img[:img.shape[0]/2, :]
img_right = img[img.shape[0]/2:, :]
subplot(121)
imshow(img_left, origin='lower', aspect='auto',
 extent=(0, sound.duration/ms, 0, 360))
xlabel('Time (ms)')
ylabel('Azimuth')
title('Left ear')
subplot(122)
imshow(img_right, origin='lower', aspect='auto',
 extent=(0, sound.duration/ms, 0, 360))
xlabel('Time (ms)')
ylabel('Azimuth')
title('Right ear')
show()

This generates the following output:

[image: _images/hrtfset_response_plot.png]
For more details, see the reference documentation for HRTF,
HRTFSet, HRTFDatabase, IRCAM_LISTEN and
HeadlessDatabase.

Reference

	
brian2hears.set_default_samplerate(samplerate)[source]

	Sets the default samplerate for Brian hears objects, by default 44.1 kHz.

Sounds

	
class brian2hears.Sound[source]

	Class for working with sounds, including loading/saving, manipulating and playing.

For an overview, see Sounds.

Initialisation

The following arguments are used to initialise a sound object

	data

	Can be a filename, an array, a function or a sequence (list or tuple).
If its a filename, the sound file (WAV or AIFF) will be loaded. If its
an array, it should have shape (nsamples, nchannels). If its a
function, it should be a function f(t). If its a sequence, the items
in the sequence can be filenames, functions, arrays or Sound objects.
The output will be a multi-channel sound with channels the corresponding
sound for each element of the sequence.

	samplerate=None

	The samplerate, if necessary, will use the default (for an array or
function) or the samplerate of the data (for a filename).

	duration=None

	The duration of the sound, if initialising with a function.

Loading, saving and playing

	
static load(filename)[source]

	Load the file given by filename and returns a Sound object.
Sound file can be either a .wav or a .aif file.

	
save(filename, normalise=False, samplewidth=2)[source]

	Save the sound as a WAV.

If the normalise keyword is set to True, the amplitude of the sound will be
normalised to 1. The samplewidth keyword can be 1 or 2 to save the data as
8 or 16 bit samples.

	
play(normalise=False, sleep=False)[source]

	Plays the sound (normalised to avoid clipping if required). If
sleep=True then the function will wait until the sound has finished
playing before returning.

Properties

	
duration

	The length of the sound in seconds.

	
nsamples

	The number of samples in the sound.

	
nchannels

	The number of channels in the sound.

	
times

	An array of times (in seconds) corresponding to each sample.

	
left

	The left channel for a stereo sound.

	
right

	The right channel for a stereo sound.

	
channel(n)[source]

	Returns the nth channel of the sound.

Generating sounds

All sound generating methods can be used with durations arguments in samples (int) or units (e.g. 500*ms). One can also set the number of channels by setting the keyword argument nchannels to the desired value. Notice that for noise the channels will be generated independantly.

	
static tone(frequency, duration, phase=0, samplerate=None, nchannels=1)[source]

	Returns a pure tone at frequency for duration, using the default
samplerate or the given one. The frequency and phase parameters
can be single values, in which case multiple channels can be
specified with the nchannels argument, or they can be sequences
(lists/tuples/arrays) in which case there is one frequency or phase for
each channel.

	
static whitenoise(duration, samplerate=None, nchannels=1)[source]

	Returns a white noise. If the samplerate is not specified, the global
default value will be used.

	
static powerlawnoise(duration, alpha, samplerate=None, nchannels=1, normalise=False)[source]

	Returns a power-law noise for the given duration. Spectral density per unit of bandwidth scales as 1/(f**alpha).

Sample usage:

noise = powerlawnoise(200*ms, 1, samplerate=44100*Hz)

Arguments:

	duration

	Duration of the desired output.

	alpha

	Power law exponent.

	samplerate

	Desired output samplerate

	
static brownnoise(duration, samplerate=None, nchannels=1, normalise=False)[source]

	Returns brown noise, i.e powerlawnoise() with alpha=2

	
static pinknoise(duration, samplerate=None, nchannels=1, normalise=False)[source]

	Returns pink noise, i.e powerlawnoise() with alpha=1

	
static silence(duration, samplerate=None, nchannels=1)[source]

	Returns a silent, zero sound for the given duration. Set nchannels to set the number of channels.

	
static click(duration=1, peak=None, samplerate=None, nchannels=1)[source]

	Returns a click of the given duration (in time or samples)

If peak is not specified, the amplitude will be 1, otherwise
peak refers to the peak dB SPL of the click, according to the
formula 28e-6*10**(peak/20.).

	
static clicks(duration, n, interval, peak=None, samplerate=None, nchannels=1)[source]

	Returns a series of n clicks (see click()) separated by interval.

	
static harmoniccomplex(f0, duration, amplitude=1, phase=0, samplerate=None, nchannels=1)[source]

	Returns a harmonic complex composed of pure tones at integer multiples
of the fundamental frequency f0.
The amplitude and
phase keywords can be set to either a single value or an
array of values. In the former case the value is set for all
harmonics, and harmonics up to the sampling frequency are
generated. In the latter each harmonic parameter is set
separately, and the number of harmonics generated corresponds
to the length of the array.

	
static vowel(vowel=None, formants=None, pitch=100.0, duration=1.0, samplerate=None, nchannels=1)[source]

	Returns an artifically created spoken vowel sound (following the
source-filter model of speech production) with a given pitch.

The vowel can be specified by either providing vowel as a string
(‘a’, ‘i’ or ‘u’) or by setting formants to a sequence of formant
frequencies.

The returned sound is normalized to a maximum amplitude of 1.

The implementation is based on the MakeVowel function written by Richard
O. Duda, part of the Auditory Toolbox for Matlab by Malcolm Slaney:
https://engineering.purdue.edu/~malcolm/interval/1998-010/

Timing and sequencing

	
static sequence(*sounds, samplerate=None)[source]

	Returns the sequence of sounds in the list sounds joined together

	
repeat(n)[source]

	Repeats the sound n times

	
extended(duration)[source]

	Returns the Sound with length extended by the given duration, which
can be the number of samples or a length of time in seconds.

	
shifted(duration, fractional=False, filter_length=2048)[source]

	Returns the sound delayed by duration, which can be the number of
samples or a length of time in seconds. Normally, only integer
numbers of samples will be used, but if fractional=True then
the filtering method from
http://www.labbookpages.co.uk/audio/beamforming/fractionalDelay.html
will be used (introducing some small numerical errors). With this
method, you can specify the filter_length, larger values are
slower but more accurate, especially at higher frequencies. The large
default value of 2048 samples provides good accuracy for sounds with
frequencies above 20 Hz, but not for lower frequency sounds. If you are
restricted to high frequency sounds, a smaller value will be more
efficient. Note that if fractional=True then
duration is assumed to be a time not a number of samples.

	
resized(L)[source]

	Returns the Sound with length extended (or contracted) to have L samples.

Slicing

One can slice sound objects in various ways, for example sound[100*ms:200*ms]
returns the part of the sound between 100 ms and 200 ms (not including the
right hand end point). If the sound is less than 200 ms long it will be
zero padded. You can also set values using slicing, e.g.
sound[:50*ms] = 0 will silence the first 50 ms of the sound. The syntax
is the same as usual for Python slicing. In addition, you can select a
subset of the channels by doing, for example, sound[:, -5:] would be
the last 5 channels. For time indices, either times or samples can be given,
e.g. sound[:100] gives the first 100 samples. In addition, steps can
be used for example to reverse a sound as sound[::-1].

Note that slicing with units of time rather than samples will only work in
Python 3. In Python 2, you can get the same effect by writing, for example,
sound[slice(0*ms, 10*ms)]. This is a change from the original version of
brian.hears.

Arithmetic operations

Standard arithemetical operations and numpy functions work as you would
expect with sounds, e.g. sound1+sound2, 3*sound or abs(sound).

Level

	
level

	Can be used to get or set the level of a sound, which should be in dB.
For single channel sounds a value in dB is used, for multiple channel
sounds a value in dB can be used for setting the level (all channels
will be set to the same level), or a list/tuple/array of levels. It
is assumed that the unit of the sound is Pascals.

	
atlevel(level)[source]

	Returns the sound at the given level in dB SPL (RMS) assuming array is
in Pascals. level should be a value in dB, or a tuple of levels,
one for each channel.

	
maxlevel

	Can be used to set or get the maximum level of a sound. For mono
sounds, this is the same as the level, but for multichannel sounds
it is the maximum level across the channels. Relative level differences
will be preserved. The specified level should be a value in dB, and it
is assumed that the unit of the sound is Pascals.

	
atmaxlevel(level)[source]

	Returns the sound with the maximum level across channels set to the
given level. Relative level differences will be preserved. The specified
level should be a value in dB and it is assumed that the unit of the
sound is Pascals.

Ramping

	
ramp(when='onset', duration=0.01, envelope=None, inplace=True)[source]

	Adds a ramp on/off to the sound

	when='onset'

	Can take values ‘onset’, ‘offset’ or ‘both’

	duration=10*ms

	The time over which the ramping happens

	envelope

	A ramping function, if not specified uses sin(pi*t/2)**2. The
function should be a function of one variable t ranging from
0 to 1, and should increase from f(0)=0 to f(0)=1. The
reverse is applied for the offset ramp.

	inplace

	Whether to apply ramping to current sound or return a new array.

	
ramped(when='onset', duration=0.01, envelope=None)[source]

	Returns a ramped version of the sound (see Sound.ramp()).

Plotting

	
spectrogram(low=None, high=None, log_power=True, other=None, **kwds)[source]

	Plots a spectrogram of the sound

Arguments:

	low=None, high=None

	If these are left unspecified, it shows the full spectrogram,
otherwise it shows only between low and high in Hz.

	log_power=True

	If True the colour represents the log of the power.

	**kwds

	Are passed to Pylab’s specgram command.

Returns the values returned by pylab’s specgram, namely
(pxx, freqs, bins, im) where pxx is a 2D array of powers,
freqs is the corresponding frequencies, bins are the time bins,
and im is the image axis.

	
spectrum(low=None, high=None, log_power=True, display=False)[source]

	Returns the spectrum of the sound and optionally plots it.

Arguments:

	low, high

	If these are left unspecified, it shows the full spectrum,
otherwise it shows only between low and high in Hz.

	log_power=True

	If True it returns the log of the power.

	display=False

	Whether to plot the output.

Returns (Z, freqs, phase)
where Z is a 1D array of powers, freqs is the corresponding
frequencies, phase is the unwrapped phase of spectrum.

	
brian2hears.savesound(sound, filename, normalise=False, samplewidth=2)[source]

	Save the sound as a WAV.

If the normalise keyword is set to True, the amplitude of the sound will be
normalised to 1. The samplewidth keyword can be 1 or 2 to save the data as
8 or 16 bit samples.

	
brian2hears.loadsound(filename)

	Load the file given by filename and returns a Sound object.
Sound file can be either a .wav or a .aif file.

	
brian2hears.play(*sounds, normalise=False, sleep=False)[source]

	Plays the sound (normalised to avoid clipping if required). If
sleep=True then the function will wait until the sound has finished
playing before returning.

	
brian2hears.whitenoise(duration, samplerate=None, nchannels=1)

	Returns a white noise. If the samplerate is not specified, the global
default value will be used.

	
brian2hears.powerlawnoise(duration, alpha, samplerate=None, nchannels=1, normalise=False)

	Returns a power-law noise for the given duration. Spectral density per unit of bandwidth scales as 1/(f**alpha).

Sample usage:

noise = powerlawnoise(200*ms, 1, samplerate=44100*Hz)

Arguments:

	duration

	Duration of the desired output.

	alpha

	Power law exponent.

	samplerate

	Desired output samplerate

	
brian2hears.brownnoise(duration, samplerate=None, nchannels=1, normalise=False)

	Returns brown noise, i.e powerlawnoise() with alpha=2

	
brian2hears.pinknoise(duration, samplerate=None, nchannels=1, normalise=False)

	Returns pink noise, i.e powerlawnoise() with alpha=1

	
brian2hears.irns(delay, gain, niter, duration, samplerate=None, nchannels=1)

	Returns an IRN_S noise. The iterated ripple noise is obtained trough
a cascade of gain and delay filtering.
For more details: see Yost 1996 or chapter 15 in Hartman Sound Signal Sensation.

	
brian2hears.irno(delay, gain, niter, duration, samplerate=None, nchannels=1)

	Returns an IRN_O noise. The iterated ripple noise is obtained many attenuated and
delayed version of the original broadband noise.
For more details: see Yost 1996 or chapter 15 in Hartman Sound Signal Sensation.

	
brian2hears.tone(frequency, duration, phase=0, samplerate=None, nchannels=1)

	Returns a pure tone at frequency for duration, using the default
samplerate or the given one. The frequency and phase parameters
can be single values, in which case multiple channels can be
specified with the nchannels argument, or they can be sequences
(lists/tuples/arrays) in which case there is one frequency or phase for
each channel.

	
brian2hears.click(duration=1, peak=None, samplerate=None, nchannels=1)

	Returns a click of the given duration (in time or samples)

If peak is not specified, the amplitude will be 1, otherwise
peak refers to the peak dB SPL of the click, according to the
formula 28e-6*10**(peak/20.).

	
brian2hears.clicks(duration, n, interval, peak=None, samplerate=None, nchannels=1)

	Returns a series of n clicks (see click()) separated by interval.

	
brian2hears.harmoniccomplex(f0, duration, amplitude=1, phase=0, samplerate=None, nchannels=1)

	Returns a harmonic complex composed of pure tones at integer multiples
of the fundamental frequency f0.
The amplitude and
phase keywords can be set to either a single value or an
array of values. In the former case the value is set for all
harmonics, and harmonics up to the sampling frequency are
generated. In the latter each harmonic parameter is set
separately, and the number of harmonics generated corresponds
to the length of the array.

	
brian2hears.silence(duration, samplerate=None, nchannels=1)

	Returns a silent, zero sound for the given duration. Set nchannels to set the number of channels.

	
brian2hears.sequence(*sounds, samplerate=None)

	Returns the sequence of sounds in the list sounds joined together

dB

	
class brian2hears.dB_type[source]

	The type of values in dB.

dB values are assumed to be RMS dB SPL assuming that the sound source is
measured in Pascals.

	
class brian2hears.dB_error[source]

	Error raised when values in dB are used inconsistently with other units.

Filterbanks

	
class brian2hears.LinearFilterbank(source, b, a)[source]

	Generalised linear filterbank

Initialisation arguments:

	source

	The input to the filterbank, must have the same number of channels or
just a single channel. In the latter case, the channels will be
replicated.

	b, a

	The coeffs b, a must be of shape (nchannels, m) or
(nchannels, m, p). Here m is
the order of the filters, and p is the number of filters in a
chain (first you apply [:, :, 0], then [:, :, 1], etc.).

The filter parameters are stored in the modifiable attributes filt_b,
filt_a and filt_state (the variable z in the section below).

Has one method:

	
decascade(ncascade=1)[source]

	Reduces cascades of low order filters into smaller cascades of high order filters.

ncascade is the number of cascaded filters to use, which should be
a divisor of the original number.

Note that higher order filters are often numerically unstable.

Notes

These notes adapted from scipy’s lfilter() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lfilter.html#scipy.signal.lfilter] function.

The filterbank is implemented as a direct II transposed structure.
This means that for a single channel and element of the filter cascade,
the output y for an input x is defined by:

a[0]*y[m] = b[0]*x[m] + b[1]*x[m-1] + ... + b[m]*x[0]
 - a[1]*y[m-1] - ... - a[m]*y[0]

using the following difference equations:

y[i] = b[0]*x[i] + z[0,i-1]
z[0,i] = b[1]*x[i] + z[1,i-1] - a[1]*y[i]
...
z[m-3,i] = b[m-2]*x[i] + z[m-2,i-1] - a[m-2]*y[i]
z[m-2,i] = b[m-1]*x[i] - a[m-1]*y[i]

where i is the output sample number.

The rational transfer function describing this filter in the
z-transform domain is:

 -1 -nb
 b[0] + b[1]z + ... + b[m] z
Y(z) = --------------------------------- X(z)
 -1 -na
 a[0] + a[1]z + ... + a[m] z

	
class brian2hears.FIRFilterbank(source, impulse_response, use_linearfilterbank=False, minimum_buffer_size=None)[source]

	Finite impulse response filterbank

Initialisation parameters:

	source

	Source sound or filterbank.

	impulse_response

	Either a 1D array providing a single impulse response applied to every
input channel, or a 2D array of shape (nchannels, ir_length) for
ir_length the number of samples in the impulse response. Note that
if you are using a multichannel sound x as a set of impulse responses,
the array should be impulse_response=array(x.T).

	minimum_buffer_size=None

	If specified, gives a minimum size to the buffer. By default, for the
FFT convolution based implementation of FIRFilterbank, the minimum
buffer size will be 3*ir_length. For maximum efficiency with FFTs,
buffer_size+ir_length should be a power of 2 (otherwise there will
be some zero padding), and buffer_size should be as large as
possible.

	
class brian2hears.RestructureFilterbank(source, numrepeat=1, type='serial', numtile=1, indexmapping=None)[source]

	Filterbank used to restructure channels, including repeating and interleaving.

Standard forms of usage:

Repeat mono source N times:

RestructureFilterbank(source, N)

For a stereo source, N copies of the left channel followed by N copies of
the right channel:

RestructureFilterbank(source, N)

For a stereo source, N copies of the channels tiled as LRLRLR…LR:

RestructureFilterbank(source, numtile=N)

For two stereo sources AB and CD, join them together in serial to form the
output channels in order ABCD:

RestructureFilterbank((AB, CD))

For two stereo sources AB and CD, join them together interleaved to form
the output channels in order ACBD:

RestructureFilterbank((AB, CD), type='interleave')

These arguments can also be combined together, for example to AB and CD
into output channels AABBCCDDAABBCCDDAABBCCDD:

RestructureFilterbank((AB, CD), 2, 'serial', 3)

The three arguments are the number of repeats before joining, the joining
type (‘serial’ or ‘interleave’) and the number of tilings after joining.
See below for details.

Initialise arguments:

	source

	Input source or list of sources.

	numrepeat=1

	Number of times each channel in each of the input sources is repeated
before mixing the source channels. For example, with repeat=2 an input
source with channels AB will be repeated to form AABB

	type='serial'

	The method for joining the source channels, the options are 'serial'
to join the channels in series, or 'interleave' to interleave them.
In the case of 'interleave', each source must have the same number
of channels. An example of serial, if the input sources are abc
and def the output would be abcdef. For interleave, the output
would be adbecf.

	numtile=1

	The number of times the joined channels are tiled, so if the joined
channels are ABC and numtile=3 the output will be ABCABCABC.

	indexmapping=None

	Instead of specifying the restructuring via numrepeat, type, numtile
you can directly give the mapping of input indices to output indices.
So for a single stereo source input, indexmapping=[1,0] would
reverse left and right. Similarly, with two mono sources,
indexmapping=[1,0] would have channel 0 of the output correspond to
source 1 and channel 1 of the output corresponding to source 0. This is
because the indices are counted in order of channels starting from the
first source and continuing to the last. For example, suppose you had
two sources, each consisting of a stereo sound, say source 0 was
AB and source 1 was CD then indexmapping=[1, 0, 3, 2] would
swap the left and right of each source, but leave the order of the
sources the same, i.e. the output would be BADC.

	
class brian2hears.Join(*sources)[source]

	Filterbank that joins the channels of its inputs in series, e.g. with two
input sources with channels AB and CD respectively, the output would have
channels ABCD. You can initialise with multiple sources separated by
commas, or by passing a list of sources.

	
class brian2hears.Interleave(*sources)[source]

	Filterbank that interleaves the channels of its inputs, e.g. with two
input sources with channels AB and CD respectively, the output would have
channels ACBD. You can initialise with multiple sources separated by
commas, or by passing a list of sources.

	
class brian2hears.Repeat(source, numrepeat)[source]

	Filterbank that repeats each channel from its input, e.g. with 3 repeats
channels ABC would map to AAABBBCCC.

	
class brian2hears.Tile(source, numtile)[source]

	Filterbank that tiles the channels from its input, e.g. with 3 tiles
channels ABC would map to ABCABCABC.

	
class brian2hears.FunctionFilterbank(source, func, nchannels=None, **params)[source]

	Filterbank that just applies a given function. The function should take
as many arguments as there are sources.

For example, to half-wave rectify inputs:

FunctionFilterbank(source, lambda x: clip(x, 0, Inf))

The syntax lambda x: clip(x, 0, Inf) defines a function object that
takes a single argument x and returns clip(x, 0, Inf). The numpy
function clip(x, low, high) returns the values of x clipped between
low and high (so if x<low it returns low, if x>high it
returns high, otherwise it returns x). The symbol Inf means
infinity, i.e. no clipping of positive values.

Technical details

Note that functions should operate on arrays, in particular on 2D buffered
segments, which are arrays of shape (bufsize, nchannels). Typically,
most standard functions from numpy will work element-wise.

If you want a filterbank that changes the shape of the input (e.g. changes
the number of channels), set the nchannels keyword argument to the
number of output channels.

	
class brian2hears.SumFilterbank(source, weights=None)[source]

	Sum filterbanks together with given weight vectors.

For example, to take the sum of two filterbanks:

SumFilterbank((fb1, fb2))

To take the difference:

SumFilterbank((fb1, fb2), (1, -1))

	
class brian2hears.DoNothingFilterbank(source)[source]

	Filterbank that does nothing to its input.

Useful for removing a set of filters without having to rewrite your code.
Can also be used for simply writing compound derived classes. For example,
if you want a compound Filterbank that does AFilterbank and then
BFilterbank, but you want to encapsulate that into a single class, you
could do:

class ABFilterbank(DoNothingFilterbank):
 def __init__(self, source):
 a = AFilterbank(source)
 b = BFilterbank(a)
 DoNothingFilterbank.__init__(self, b)

However, a more general way of writing compound filterbanks is to use
CombinedFilterbank.

	
class brian2hears.ControlFilterbank(source, inputs, targets, updater, max_interval=None)[source]

	Filterbank that can be used for controlling behaviour at runtime

Typically, this class is used to implement a control path in an auditory
model, modifying some filterbank parameters based on the output of other
filterbanks (or the same ones).

The controller has a set of input filterbanks whose output values are used
to modify a set of output filterbanks. The update is done by a user specified
function or class which is passed these output values. The controller should
be inserted as the last bank in a chain.

Initialisation arguments:

	source

	The source filterbank, the values from this are used unmodified as the
output of this filterbank.

	inputs

	Either a single filterbank, or sequence of filterbanks which are used
as inputs to the updater.

	targets

	The filterbank or sequence of filterbanks that are modified by the
updater.

	updater

	The function or class which does the updating, see below.

	max_interval

	If specified, ensures that the updater is called at least as often
as this interval (but it may be called more often). Can be specified
as a time or a number of samples.

The updater

The updater argument can be either a function or class instance. If it
is a function, it should have a form like:

A single input
def updater(input):
 ...

Two inputs
def updater(input1, input2):
 ...

Arbitrary number of inputs
def updater(*inputs):
 ...

Each argument input to the function is a numpy array of shape
(numsamples, numchannels) where numsamples is the number of samples
just computed, and numchannels is the number of channels in the
corresponding filterbank. The function is not restricted in what it can
do with these inputs.

Functions can be used to implement relatively simple controllers, but for
more complicated situations you may want to maintain some state variables
for example, and in this case you can use a class. The object updater
should be an instance of a class that defines the __call__ method
(with the same syntax as above for functions). In addition, you can
define a reinitialisation method reinit() which will be called when
the buffer_init() method is called on the filterbank, although this is
entirely optional.

Example

The following will do a simple form of gain control, where the gain
parameter will drift exponentially towards target_rms/rms with a given time
constant:

This class implements the gain (see Filterbank for details)
class GainFilterbank(Filterbank):
 def __init__(self, source, gain=1.0):
 Filterbank.__init__(self, source)
 self.gain = gain
 def buffer_apply(self, input):
 return self.gain*input

This is the class for the updater object
class GainController(object):
 def __init__(self, target, target_rms, time_constant):
 self.target = target
 self.target_rms = target_rms
 self.time_constant = time_constant
 def reinit(self):
 self.sumsquare = 0
 self.numsamples = 0
 def __call__(self, input):
 T = input.shape[0]/self.target.samplerate
 self.sumsquare += sum(input**2)
 self.numsamples += input.size
 rms = sqrt(self.sumsquare/self.numsamples)
 g = self.target.gain
 g_tgt = self.target_rms/rms
 tau = self.time_constant
 self.target.gain = g_tgt+exp(-T/tau)*(g-g_tgt)

And an example of using this with an input source, a target RMS of 0.2
and a time constant of 50 ms, updating every 10 ms:

gain_fb = GainFilterbank(source)
updater = GainController(gain_fb, 0.2, 50*ms)
control = ControlFilterbank(gain_fb, source, gain_fb, updater, 10*ms)

	
class brian2hears.CombinedFilterbank(source)[source]

	Filterbank that encapsulates a chain of filterbanks internally.

This class should mostly be used by people writing extensions to Brian hears
rather than by users directly. The purpose is to take an existing chain of
filterbanks and wrap them up so they appear to the user as a single
filterbank which can be used exactly as any other filterbank.

In order to do this, derive from this class and in your initialisation
follow this pattern:

class RectifiedGammatone(CombinedFilterbank):
 def __init__(self, source, cf):
 CombinedFilterbank.__init__(self, source)
 source = self.get_modified_source()
 # At this point, insert your chain of filterbanks acting on
 # the modified source object
 gfb = Gammatone(source, cf)
 rectified = FunctionFilterbank(gfb,
 lambda input: clip(input, 0, Inf))
 # Finally, set the output filterbank to be the last in your chain
 self.set_output(fb)

This combination of a Gammatone and a rectification via a
FunctionFilterbank can now be used as a single filterbank, for
example:

x = whitenoise(100*ms)
fb = RectifiedGammatone(x, [1*kHz, 1.5*kHz])
y = fb.process()

Details

The reason for the get_modified_source() call is that the source
attribute of a filterbank can be changed after creation. The modified source
provides a buffer (in fact, a DoNothingFilterbank) so that the
input to the chain of filters defined by the derived class doesn’t need to
be changed.

	
class brian2hears.FractionalDelay(source, delays, filter_length=None, **args)[source]

	Filterbank for applying delays which are fractional multiples of the timestep

Initialised with arguments:

	source

	Source sound or filterbank.

	delays

	A list or array of delays to apply (the number of channels in the
filterbank will be equal to the length of this).

	filter_length=None

	Use this to explicitly set the length of the impulse response, should
be odd. If not specified, it will be automatically determined from
the delays. See notes below.

	**args

	Arguments to pass to FIRFilterbank (from which this class
is derived).

Attributes

	
delay_offset

	The global delay offset. If the specified delay in a given channel is
delay the actual delay will be delay_offset+delay. It is equal
to (filter_length/2)/source.samplerate.

	
filter_length

	The length of the filter to use. This is automatically determined
from the delays. Note that delay_offset should be larger than the
maximum positive or negative delay. The minimum filter length is
by default 2048 samples, which allows for good accuracy for signals
with power above 20 Hz. For low frequency analysis, longer filters will
be necessary. For high frequency analysis, a shorter filter length could
be used for a more efficient computation.

Notes

Inducing a delay for a sound that is an integer multiple of the timestep
(1/samplerate) can be done simply by offsetting the samples, e.g.
sound[3:] is sound delayed by 3/sound.samplerate. However,
for fractional multiples of the timestep, the sound needs to be filtered.
The theory and code for this was adapted from
http://www.labbookpages.co.uk/audio/beamforming/fractionalDelay.html.

The filters induce a delay of delay_offset+delay where delay_offset
is a positive value larger than the maximum positive or negative delay.
This value is available as the attribute delay_offset.

Filterbank library

	
class brian2hears.Gammatone(source, cf, b=1.019, erb_order=1, ear_Q=9.26449, min_bw=24.7)[source]

	Bank of gammatone filters.

They are implemented as cascades of four 2nd-order IIR filters (this
8th-order digital filter corresponds to a 4th-order gammatone filter).

The approximated impulse response \(\mathrm{IR}\) is defined as follow
\(\mathrm{IR}(t)=t^3\exp(-2\pi b \mathrm{ERB}(f)t)\cos(2\pi f t)\)
where \(\mathrm{ERB}(f)=24.7+0.108 f\) [Hz] is the equivalent
rectangular bandwidth of the filter centered at \(f\).

It comes from Slaney’s exact gammatone implementation (Slaney, M., 1993,
“An Efficient Implementation of the Patterson-Holdsworth
Auditory Filter Bank”. Apple Computer Technical Report #35). The code is
based on
Slaney’s Matlab implementation [https://engineering.purdue.edu/~malcolm/interval/1998-010/].

Initialised with arguments:

	source

	Source of the filterbank.

	cf

	List or array of center frequencies.

	b=1.019

	parameter which determines the bandwidth of the filters (and
reciprocally the duration of its impulse response). In particular, the
bandwidth = b.ERB(cf), where ERB(cf) is the equivalent bandwidth at
frequency cf. The default value of b to a best fit
(Patterson et al., 1992). b can either be a scalar and will be the
same for every channel or an array of the same length as cf.

	erb_order=1, ear_Q=9.26449, min_bw=24.7

	Parameters used to compute the ERB bandwidth.
\(\mathrm{ERB} = ((\mathrm{cf}/\mathrm{ear_Q})^{\mathrm{erb}_\mathrm{order}} + \mathrm{min_bw}^{\mathrm{erb}_\mathrm{order}})^{(1/\mathrm{erb}_\mathrm{order})}\).
Their default values are the ones recommended in
Glasberg and Moore, 1990.

	cascade=None

	Specify 1 or 2 to use a cascade of 1 or 2 order 8 or 4 filters instead
of 4 2nd order filters. Note that this is more efficient but may
induce numerical stability issues.

	
class brian2hears.ApproximateGammatone(source, cf, bandwidth, order=4)[source]

	Bank of approximate gammatone filters implemented as a cascade of order IIR gammatone filters.

The filter is derived from the sampled version of the complex analog
gammatone impulse response
\(g_{\gamma}(t)=t^{\gamma-1} (\lambda e^{i \eta t})^{\gamma}\)
where \(\gamma\) corresponds to order, \(\eta\) defines the
oscillation frequency cf, and \(\lambda\) defines the bandwidth
parameter.

The design is based on the Hohmann implementation as described in
Hohmann, V., 2002, “Frequency analysis and synthesis using a Gammatone
filterbank”, Acta Acustica United with Acustica. The code is based on the
Matlab gammatone implementation from
Meddis’ toolbox [https://github.com/rmeddis/MAP/].

Initialised with arguments:

	source

	Source of the filterbank.

	cf

	List or array of center frequencies.

	bandwidth

	List or array of filters bandwidth corresponding, one for each cf.

	order=4

	The number of 1st-order gammatone filters put in cascade, and therefore
the order the resulting gammatone filters.

	
class brian2hears.LogGammachirp(source, f, b=1.019, c=1, ncascades=4)[source]

	Bank of gammachirp filters with a logarithmic frequency sweep.

The approximated impulse response \(\mathrm{IR}\) is defined as follows:
\(\mathrm{IR}(t)=t^3e^{-2\pi b \mathrm{ERB}(f)t}\cos(2\pi (f t +c\cdot\ln(t))\)
where \(\mathrm{ERB}(f)=24.7+0.108 f\) [Hz] is the equivalent
rectangular bandwidth of the filter centered at \(f\).

The implementation is a cascade of 4 2nd-order IIR gammatone filters
followed by a cascade of ncascades 2nd-order asymmetric compensation filters
as introduced in Unoki et al. 2001, “Improvement of an IIR asymmetric
compensation gammachirp filter”.

Initialisation parameters:

	source

	Source sound or filterbank.

	f

	List or array of the sweep ending frequencies
(\(f_{\mathrm{instantaneous}}=f+c/t\)).

	b=1.019

	Parameters which determine the duration of the impulse response.
b can either be a scalar and will be the same for every channel or
an array with the same length as f.

	c=1

	The glide slope (or sweep rate) given in Hz/second. The trajectory of
the instantaneous frequency towards f is an upchirp when c<0 and a
downchirp when c>0.
c can either be a scalar and will be the same for every channel or
an array with the same length as f.

	ncascades=4

	Number of times the asymmetric compensation filter is put in cascade.
The default value comes from Unoki et al. 2001.

	
class brian2hears.LinearGammachirp(source, f, time_constant, c=1, phase=0)[source]

	Bank of gammachirp filters with linear frequency sweeps and gamma envelope
as described in Wagner et al. 2009, “Auditory responses in the barn owl’s
nucleus laminaris to clicks: impulse response and signal analysis of
neurophonic potential”, J. Neurophysiol.

The impulse response \(\mathrm{IR}\) is defined as follow
\(\mathrm{IR}(t)=t^3e^{-t/\sigma}\cos(2\pi (f t +c/2 t^2)+\phi)\)
where \(\sigma\) corresponds to time_constant and \(\phi\) to
phase (see definition of parameters).

Those filters are implemented as FIR filters using truncated time
representations of gammachirp functions as the impulse response. The impulse
responses, which need to have the same length for every channel, have a
duration of 15 times the biggest time constant. The length of the impulse
response is therefore 15*max(time_constant)*sampling_rate. The impulse
responses are normalized with respect to the transmitted power, i.e.
the rms of the filter taps is 1.

Initialisation parameters:

	source

	Source sound or filterbank.

	f

	List or array of the sweep starting frequencies
(\(f_{\mathrm{instantaneous}}=f+ct\)).

	time_constant

	Determines the duration of the envelope and consequently the length of
the impulse response.

	c=1

	The glide slope (or sweep rate) given in Hz/second. The time-dependent
instantaneous frequency is f+c*t and is therefore going upward when
c>0 and downward when c<0. c can either be a scalar and will be the
same for every channel or an array with the same length as f.

	phase=0

	Phase shift of the carrier.

Has attributes:

	length_impulse_response

	Number of samples in the impulse responses.

	impulse_response

	Array of shape (nchannels, length_impulse_response) with each row
being an impulse response for the corresponding channel.

	
class brian2hears.LinearGaborchirp(source, f, time_constant, c=1, phase=0)[source]

	Bank of gammachirp filters with linear frequency sweeps and gaussian envelope
as described in Wagner et al. 2009, “Auditory responses in the barn owl’s
nucleus laminaris to clicks: impulse response and signal analysis of
neurophonic potential”, J. Neurophysiol.

The impulse response \(\mathrm{IR}\) is defined as follows:
\(\mathrm{IR}(t)=e^{-t/2\sigma^2}\cos(2\pi (f t +c/2 t^2)+\phi)\),
where \(\sigma\) corresponds to time_constant and \(\phi\) to
phase (see definition of parameters).

These filters are implemented as FIR filters using truncated time
representations of gammachirp functions as the impulse response. The impulse
responses, which need to have the same length for every channel, have a
duration of 12 times the biggest time constant. The length of the impulse
response is therefore 12*max(time_constant)*sampling_rate. The envelope
is a gaussian function (Gabor filter). The impulse responses are normalized
with respect to the transmitted power, i.e. the rms of the filter taps is
1.

Initialisation parameters:

	source

	Source sound or filterbank.

	f

	List or array of the sweep starting frequencies
(\(f_{\mathrm{instantaneous}}=f+c*t\)).

	time_constant

	Determines the duration of the envelope and consequently the length of
the impluse response.

	c=1

	The glide slope (or sweep rate) given ins Hz/second. The time-dependent
instantaneous frequency is f+c*t and is therefore going upward when
c>0 and downward when c<0. c can either be a scalar and will be the
same for every channel or an array with the same length as f.

	phase=0

	Phase shift of the carrier.

Has attributes:

	length_impulse_response

	Number of sample in the impulse responses.

	impulse_response

	Array of shape (nchannels, length_impulse_response) with each row
being an impulse response for the corresponding channel.

	
class brian2hears.IIRFilterbank(source, nchannels, passband, stopband, gpass, gstop, btype, ftype)[source]

	Filterbank of IIR filters. The filters can be low, high, bandstop or
bandpass and be of type Elliptic, Butterworth, Chebyshev etc. The
passband and stopband can be scalars (for low or high pass) or
pairs of parameters (for stopband and passband) yielding similar filters for
every channel. They can also be arrays of shape (1, nchannels) for low
and high pass or (2, nchannels) for stopband and passband yielding
different filters along channels. This class uses the scipy iirdesign
function to generate filter coefficients for every channel.

See the documentation for scipy.signal.iirdesign for more details.

Initialisation parameters:

	samplerate

	The sample rate in Hz.

	nchannels

	The number of channels in the bank

	passband, stopband

	The edges of the pass and stop bands in Hz. For lowpass and highpass
filters, in the case of similar filters for each channel, they are
scalars and passband<stopband for low pass or stopband>passband for a
highpass. For a bandpass or bandstop filter, in the case of similar
filters for each channel, make passband and stopband a list with two
elements, e.g. for a bandpass have passband=[200*Hz, 500*Hz] and
stopband=[100*Hz, 600*Hz]. passband and stopband can also be
arrays of shape (1, nchannels) for low and high pass or
(2, nchannels) for stopband and passband yielding different filters
along channels.

	gpass

	The maximum loss in the passband in dB. Can be a scalar or an array of
length nchannels.

	gstop

	The minimum attenuation in the stopband in dB. Can be a scalar or an
array of length nchannels.

	btype

	One of ‘low’, ‘high’, ‘bandpass’ or ‘bandstop’.

	ftype

	The type of IIR filter to design:
‘ellip’ (elliptic),
‘butter’ (Butterworth),
‘cheby1’ (Chebyshev I),
‘cheby2’ (Chebyshev II),
‘bessel’ (Bessel).

	
class brian2hears.Butterworth(source, nchannels, order, fc, btype='low')[source]

	Filterbank of low, high, bandstop or bandpass Butterworth filters.
The cut-off frequencies or the band frequencies can either be the same for
each channel or different along channels.

Initialisation parameters:

	samplerate

	Sample rate.

	nchannels

	Number of filters in the bank.

	order

	Order of the filters.

	fc

	Cutoff parameter(s) in Hz. For the case of a lowpass or highpass
filterbank, fc is either a scalar (thus the same value for all of
the channels) or an array of length nchannels. For the case of a
bandpass or bandstop, fc is either a pair of scalar defining the
bandpass or bandstop (thus the same values for all of the channels) or
an array of shape (2, nchannels) to define a pair for every channel.

	btype

	One of ‘low’, ‘high’, ‘bandpass’ or ‘bandstop’.

	
class brian2hears.Cascade(source, filterbank, n)[source]

	Cascade of n times a linear filterbank.

Initialised with arguments:

	source

	Source of the new filterbank.

	filterbank

	Filterbank object to be put in cascade

	n

	Number of cascades

	
class brian2hears.LowPass(source, fc)[source]

	Bank of 1st-order lowpass filters

The code is based on the code found in the
Meddis toolbox [https://github.com/rmeddis/MAP/].
It was implemented here to be used in the DRNL cochlear model implementation.

Initialised with arguments:

	source

	Source of the filterbank.

	fc

	Value, list or array (with length = number of channels) of cutoff
frequencies.

	
class brian2hears.AsymmetricCompensation(source, f, b=1.019, c=1, ncascades=4)[source]

	Bank of asymmetric compensation filters.

Those filters are meant to be used in cascade with gammatone filters to
approximate gammachirp filters (Unoki et al., 2001, Improvement of
an IIR asymmetric compensation gammachirp filter, Acoust. Sci. & Tech.).
They are implemented a a cascade of low order filters. The code
is based on the implementation found in the
AIM-MAT toolbox [https://code.soundsoftware.ac.uk/projects/aimmat].

Initialised with arguments:

	source

	Source of the filterbank.

	f

	List or array of the cut off frequencies.

	b=1.019

	Determines the duration of the impulse response.
Can either be a scalar and will be the same for every channel or
an array with the same length as cf.

	c=1

	The glide slope when this filter is used to implement a gammachirp.
Can either be a scalar and will be the same for every channel or
an array with the same length as cf.

	ncascades=4

	The number of time the basic filter is put in cascade.

Auditory model library

	
class brian2hears.DRNL(source, cf, type='human', param={})[source]

	Implementation of the dual resonance nonlinear (DRNL) filter
as described in Lopez-Paveda, E. and Meddis, R.,
“A human nonlinear cochlear filterbank”, JASA 2001.

The entire pathway consists of the sum of a linear and a nonlinear pathway.

The linear path consists of a bank of bandpass filters (second order
gammatone), a low pass function, and a gain/attenuation factor, g, in a
cascade.

The nonlinear path is a cascade consisting of a bank of gammatone filters, a
compression function, a second bank of gammatone filters, and a low
pass function, in that order.

Initialised with arguments:

	source

	Source of the cochlear model.

	cf

	List or array of center frequencies.

	type

	defines the parameters set corresponding to a certain fit. It can be
either:

	type='human'

	The parameters come from Lopez-Paveda, E. and Meddis, R.., “A human
nonlinear cochlear filterbank”, JASA 2001.

	type ='guinea pig'

	The parameters come from Summer et al., “A nonlinear filter-bank
model of the guinea-pig cochlear nerve: Rate responses”, JASA 2003.

	param

	Dictionary used to overwrite the default parameters given in the
original papers.

The possible parameters to change and their default values for humans (see
Lopez-Paveda, E. and Meddis, R.,”A human nonlinear cochlear filterbank”,
JASA 2001. for notation) are:

param['stape_scale']=0.00014
param['order_linear']=3
param['order_nonlinear']=3

from there on the parameters are given in the form
\(x=10^{\mathrm{p0}+m\log_{10}(\mathrm{cf})}\) where
cf is the center frequency:

param['cf_lin_p0']=-0.067
param['cf_lin_m']=1.016
param['bw_lin_p0']=0.037
param['bw_lin_m']=0.785
param['cf_nl_p0']=-0.052
param['cf_nl_m']=1.016
param['bw_nl_p0']=-0.031
param['bw_nl_m']=0.774
param['a_p0']=1.402
param['a_m']=0.819
param['b_p0']=1.619
param['b_m']=-0.818
param['c_p0']=-0.602
param['c_m']=0
param['g_p0']=4.2
param['g_m']=0.48
param['lp_lin_cutoff_p0']=-0.067
param['lp_lin_cutoff_m']=1.016
param['lp_nl_cutoff_p0']=-0.052
param['lp_nl_cutoff_m']=1.016

	
class brian2hears.DCGC(source, cf, update_interval=1, param={})[source]

	The compressive gammachirp auditory filter as described in Irino, T. and
Patterson R., “A compressive gammachirp auditory filter for both
physiological and psychophysical data”, JASA 2001.

Technical implementation details and notation can be found in Irino, T. and
Patterson R., “A Dynamic Compressive Gammachirp Auditory Filterbank”,
IEEE Trans Audio Speech Lang Processing.

The model consists of a control pathway and a signal pathway in parallel.

The control pathway consists of a bank of bandpass filters followed by a
bank of highpass filters (this chain yields a bank of gammachirp filters).

The signal pathway consist of a bank of fix bandpass filters followed by a
bank of highpass filters with variable cutoff frequencies (this chain
yields a bank of gammachirp filters with a level-dependent bandwidth). The
highpass filters of the signal pathway are controlled
by the output levels of the two stages of the control pathway.

Initialised with arguments:

	source

	Source of the cochlear model.

	cf

	List or array of center frequencies.

	update_interval

	Interval in samples controlling how often the band pass filter of the
signal pathway is updated. Smaller values are more accurate, but give
longer computation times.

	param

	Dictionary used to overwrite the default parameters given in the
original paper.

The possible parameters to change and their default values (see Irino, T.
and Patterson R., “A Dynamic Compressive Gammachirp
Auditory Filterbank”, IEEE Trans Audio Speech Lang Processing) are:

param['b1'] = 1.81
param['c1'] = -2.96
param['b2'] = 2.17
param['c2'] = 2.2
param['decay_tcst'] = .5*ms
param['lev_weight'] = .5
param['level_ref'] = 50.
param['level_pwr1'] = 1.5
param['level_pwr2'] = .5
param['RMStoSPL'] = 30.
param['frat0'] = .2330
param['frat1'] = .005
param['lct_ERB'] = 1.5 #value of the shift in ERB frequencies
param['frat_control'] = 1.08
param['order_gc']=4
param['ERBrate']= 21.4*log10(4.37*cf/1000+1) # cf is the center frequency
param['ERBwidth']= 24.7*(4.37*cf/1000 + 1)

	
class brian2hears.MiddleEar(source, gain=1, **kwds)[source]

	Implements the middle ear model from Tan & Carney (2003) (linear filter
with two pole pairs and one double zero). The gain is normalized for the
response of the analog filter at 1000Hz as in the model of Tan & Carney
(their actual C code does however result in a slightly different
normalization, the difference in overall level is about 0.33dB (to get
exactly the same output as in their model, set the gain parameter to
0.962512703689).

Tan, Q., and L. H. Carney.
“A Phenomenological Model for the Responses of Auditory-nerve Fibers.
II. Nonlinear Tuning with a Frequency Glide”.
The Journal of the Acoustical Society of America 114 (2003): 2007.

	
class brian2hears.TanCarney(source, cf, update_interval=1, param=None)[source]

	Class implementing the nonlinear auditory filterbank model as described in
Tan, G. and Carney, L.,
“A phenomenological model for the responses of auditory-nerve
fibers. II. Nonlinear tuning with a frequency glide”, JASA 2003.

The model consists of a control path and a signal path. The control path
controls both its own bandwidth via a feedback
loop and also the bandwidth of the signal path.

Initialised with arguments:

	source

	Source of the cochlear model.

	cf

	List or array of center frequencies.

	update_interval

	Interval in samples controlling how often the band pass filter of the
signal pathway is updated. Smaller values are more accurate but
increase the computation time.

	param

	Dictionary used to overwrite the default parameters given in the
original paper.

	
class brian2hears.ZhangSynapse(source, CF, n_per_channel=1, params=None)[source]

	A FilterbankGroup that represents an IHC-AN synapse according to the
Zhang et al. (2001) model. The source should be a filterbank, producing
V_ihc (e.g. TanCarney). CF specifies the characteristic frequencies of
the AN fibers. params overwrites any parameters values given in the
publication.

The group emits spikes according to a time-varying Poisson process with
absolute and relative refractoriness (probability of spiking is given by
state variable R). The continuous probability of spiking without
refractoriness is available in the state variable s.

The n_per_channel argument can be used to generate multiple spike trains
for every channel.

If all you need is the state variable s, you can use the class
ZhangSynapseRate instead which does not simulate the spike-generating
Poisson process.

For details see:
Zhang, X., M. G. Heinz, I. C. Bruce, and L. H. Carney.
“A Phenomenological Model for the Responses of Auditory-nerve Fibers:
I. Nonlinear Tuning with Compression and Suppression”.
The Journal of the Acoustical Society of America 109 (2001): 648.

	
class brian2hears.ZhangSynapseRate(source, CF, params=None)[source]

	A FilterbankGroup that represents an IHC-AN synapse according to the
Zhang et al. (2001) model, see ZhangSynapse for details. This class does
not actually generate any spikes, it only simulates the time-varying
firing rate (not taking refractory effects into account) s.

	
class brian2hears.ZhangSynapseSpikes(source, n_per_channel=1, params=None)[source]

	The spike-generating Poisson process (with absolute and relative
refractoriness) of an IHC-AN synapse according to the Zhang et al. (2001)
model. The source has to have a state variable s, representing the
firing rate (e.g. the class ZhangSynapseRate).

The n_per_channel argument can be used to generate multiple spike trains
for every channel of the source group.

Filterbank group

	
class brian2hears.FilterbankGroup(filterbank, targetvar, *args, **kwds)[source]

	Allows a Filterbank object to be used as a NeuronGroup

Initialised as a standard NeuronGroup [https://brian2.readthedocs.io/en/stable/reference/brian2.groups.neurongroup.NeuronGroup.html#brian2.groups.neurongroup.NeuronGroup] object,
but with two additional arguments at the beginning, and no N (number of
neurons) argument. The number of neurons in the group will be the number of
channels in the filterbank.

	filterbank

	The Filterbank object to be used by the group. In fact, any Bufferable
object can be used.

	targetvar

	The target variable to put the filterbank output into.

One additional keyword is available beyond that of
NeuronGroup [https://brian2.readthedocs.io/en/stable/reference/brian2.groups.neurongroup.NeuronGroup.html#brian2.groups.neurongroup.NeuronGroup]:

	buffersize=32

	The size of the buffered segments to fetch each time. The efficiency
depends on this in an unpredictable way, larger values mean more time
spent in optimised code, but are worse for the cache. In many cases,
the default value is a good tradeoff. Values can be given as a number
of samples, or a length of time in seconds.

Note that if you specify your own Clock [https://brian2.readthedocs.io/en/stable/reference/brian2.core.clocks.Clock.html#brian2.core.clocks.Clock], it should
have 1/dt=samplerate.

Functions

	
brian2hears.erbspace(low, high, N, earQ=9.26449, minBW=24.7, order=1)[source]

	Returns the centre frequencies on an ERB scale.

	low, high

	Lower and upper frequencies

	N

	Number of channels

	earQ=9.26449, minBW=24.7, order=1

	Default Glasberg and Moore parameters.

	
brian2hears.asymmetric_compensation_coeffs(samplerate, fr, filt_b, filt_a, b, c, p0, p1, p2, p3, p4)[source]

	This function is used to generated the coefficient of the asymmetric
compensation filter used for the gammachirp implementation.

Plotting

	
brian2hears.log_frequency_xaxis_labels(ax=None, freqs=None)[source]

	Sets tick positions for log-scale frequency x-axis at sensible locations.

Also uses scalar representation rather than exponential (i.e. 100 rather
than 10^2).

	ax=None

	The axis to set, or uses gca() if None.

	freqs=None

	Override the default frequency locations with your preferred tick
locations.

See also: log_frequency_yaxis_labels().

Note: with log scaled axes, it can be useful to call axis('tight')
before setting the ticks.

	
brian2hears.log_frequency_yaxis_labels(ax=None, freqs=None)[source]

	Sets tick positions for log-scale frequency x-axis at sensible locations.

Also uses scalar representation rather than exponential (i.e. 100 rather
than 10^2).

	ax=None

	The axis to set, or uses gca() if None.

	freqs=None

	Override the default frequency locations with your preferred tick
locations.

See also: log_frequency_yaxis_labels().

Note: with log scaled axes, it can be useful to call axis('tight')
before setting the ticks.

HRTFs

	
class brian2hears.HRTF(hrir_l, hrir_r=None)[source]

	Head related transfer function.

Attributes

	impulse_response

	The pair of impulse responses (as stereo Sound objects)

	fir

	The impulse responses in a format suitable for using with
FIRFilterbank (the transpose of impulse_response).

	left, right

	The two HRTFs (mono Sound objects)

	samplerate

	The sample rate of the HRTFs.

Methods

	
apply(sound)[source]

	Returns a stereo Sound object formed by applying the pair of
HRTFs to the mono sound input. Equivalently, you can write
hrtf(sound) for hrtf an HRTF object.

	
filterbank(source, **kwds)[source]

	Returns an FIRFilterbank object that can be used to apply
the HRTF as part of a chain of filterbanks.

You can get the number of samples in the impulse response with len(hrtf).

	
class brian2hears.HRTFSet(data, samplerate, coordinates)[source]

	A collection of HRTFs, typically for a single individual.

Normally this object is created automatically by an HRTFDatabase.

Attributes

	hrtf

	A list of HRTF objects for each index.

	num_indices

	The number of HRTF locations. You can also use len(hrtfset).

	num_samples

	The sample length of each HRTF.

	fir_serial, fir_interleaved

	The impulse responses in a format suitable for using with
FIRFilterbank, in serial (LLLLL…RRRRR….) or interleaved
(LRLRLR…).

Methods

	
subset(condition)[source]

	Generates the subset of the set of HRTFs whose coordinates satisfy
the condition. This should be one of: a boolean array of
length the number of HRTFs in the set, with values
of True/False to indicate if the corresponding HRTF should be included
or not; an integer array with the indices of the HRTFs to keep; or a
function whose argument names are
names of the parameters of the coordinate system, e.g.
condition=lambda azim:azim<pi/2.

	
filterbank(source, interleaved=False, **kwds)[source]

	Returns an FIRFilterbank object which applies all of the HRTFs
in the set. If interleaved=False then
the channels are arranged in the order LLLL…RRRR…, otherwise they
are arranged in the order LRLRLR….

	
get_index(**kwds)[source]

	Return the index of the HRTF with the coords specified by keyword.

You can access an HRTF by index via hrtfset[index], or
by its coordinates via hrtfset(coord1=val1, coord2=val2).

Initialisation

	data

	An array of shape (2, num_indices, num_samples) where data[0,:,:] is
the left ear and data[1,:,:] is the right ear, num_indices is the number
of HRTFs for each ear, and num_samples is the length of the HRTF.

	samplerate

	The sample rate for the HRTFs (should have units of Hz).

	coordinates

	A record array of length num_indices giving the coordinates of each
HRTF. You can use make_coordinates() to help with this.

	
class brian2hears.HRTFDatabase(samplerate=None)[source]

	Base class for databases of HRTFs

Should have an attribute ‘subjects’ giving a list of available subjects,
and a method load_subject(subject) which returns an HRTFSet for that
subject.

The initialiser should take (optional) keywords:

	samplerate

	The intended samplerate (resampling will be used if it is wrong). If
left unset, the natural samplerate of the data set will be used.

	
brian2hears.make_coordinates(**kwds)[source]

	Creates a numpy record array from the keywords passed to the function.
Each keyword/value pair should be the name of the coordinate the array of
values of that coordinate for each location.
Returns a numpy record array. For example:

coords = make_coordinates(azimuth=[0, 30, 60, 0, 30, 60],
 elevation=[0, 0, 0, 30, 30, 30])
print coords['azimuth']

	
class brian2hears.IRCAM_LISTEN(basedir=None, compensated=False, samplerate=None)[source]

	HRTFDatabase for the IRCAM LISTEN public HRTF database.

For details on the database, see the
website [http://recherche.ircam.fr/equipes/salles/listen/].

The database object can be initialised with the following arguments:

	basedir=None

	The directory where the database has been downloaded and extracted,
e.g. r'D:\HRTF\IRCAM'. Multiple directories in a list can be provided as well (e.g IRCAM and IRCAM New).
Note that if you set this to None, it will use the environment variable IRCAM_LISTEN if that has been set.

	compensated=False

	Whether to use the raw or compensated impulse responses.

	samplerate=None

	If specified, you can resample the impulse responses to a different
samplerate, otherwise uses the default 44.1 kHz.

The coordinates are pairs (azim, elev) where azim ranges from 0
to 345 degrees in steps of 15 degrees, and elev ranges from -45 to 90 in
steps of 15 degrees. After loading the database, the attribute ‘subjects’ gives all the subjects number that were detected as installed.

Obtaining the database

The database can be downloaded
here [http://recherche.ircam.fr/equipes/salles/listen/download.html].
Each subject archive should be extracted to a folder (e.g. IRCAM) with the
names of the subject, e.g. IRCAM/IRC_1002, etc.

	
class brian2hears.HeadlessDatabase(n=None, azim_max=1.5707963267948966, diameter=0.22308, itd=None, samplerate=None, fractional_itds=False)[source]

	Database for creating HRTFSet with artificial interaural time-differences

Initialisation keywords:

	n, azim_max, diameter

	Specify the ITDs for two ears separated by distance diameter with
no head. ITDs corresponding to n angles equally spaced between
-azim_max and azim_max are used. The default diameter is that
which gives the maximum ITD as 650 microseconds. The ITDs are computed
with the formula diameter*sin(azim)/speed_of_sound_in_air. In this
case, the generated HRTFSet will have coordinates of azim
and itd.

	itd

	Instead of specifying the keywords above, just give the ITDs directly.
In this case, the generated HRTFSet will have coordinates of
itd only.

	fractional_itds=False

	Set this to True to allow ITDs with a fractional multiple of the
timestep 1/samplerate. Note that the filters used to do this are
not perfect and so this will introduce a small amount of numerical
error, and so shouldn’t be used unless this level of timing precision
is required. See FractionalDelay for more details.

To get the HRTFSet, the simplest thing to do is just:

hrtfset = HeadlessDatabase(13).load_subject()

The generated ITDs can be returned using the itd attribute of the
HeadlessDatabase object.

If fractional_itds=False then
Note that the delays induced in the left and right channels are not
symmetric as making them so wastes half the samplerate (if the delay to
the left channel is itd/2 and the delay to the right channel is -itd/2).
Instead, for each channel either the left channel delay is 0 and the right
channel delay is -itd (if itd<0) or the left channel delay is itd and the
right channel delay is 0 (if itd>0).

If fractional_itds=True then delays in the left and right channels will
be symmetric around a global offset of delay_offset.

Base classes

Useful for understanding more about the internals.

	
class brian2hears.Bufferable[source]

	Base class for brian2hears classes

Defines a buffering interface of two methods:

	buffer_init()

	Initialise the buffer, should set the time pointer to zero and do
any other initialisation that the object needs.

	buffer_fetch(start, end)

	Fetch the next samples start:end from the buffer. Value returned
should be an array of shape (end-start, nchannels). Can throw an
IndexError exception if it is outside the possible range.

In addition, bufferable objects should define attributes:

	nchannels

	The number of channels in the buffer.

	samplerate

	The sample rate in Hz.

By default, the class will define a default buffering mechanism which can
easily be extended. To extend the default buffering mechanism, simply
implement the method:

	buffer_fetch_next(samples)

	Returns the next samples from the buffer.

The default methods for buffer_init() and buffer_fetch() will
define a buffer cache which will get larger if it needs to to accommodate
a buffer_fetch(start, end) where end-start is larger than the
current cache. If the filterbank has a minimum_buffer_size attribute,
the internal cache will always have at least this size, and the
buffer_fetch_next(samples) method will always get called with
samples>=minimum_buffer_size. This can be useful to ensure that the
buffering is done efficiently internally, even if the user request
buffered chunks that are too small. If the filterbank has a
maximum_buffer_size attribute then buffer_fetch_next(samples) will
always be called with samples<=maximum_buffer_size - this can be useful
for either memory consumption reasons or for implementing time varying
filters that need to update on a shorter time window than the overall
buffer size.

The following attributes will automatically be maintained:

	self.cached_buffer_start, self.cached_buffer_end

	The start and end of the cached segment of the buffer

	self.cached_buffer_output

	An array of shape ((cached_buffer_end-cached_buffer_start, nchannels)
with the current cached segment of the buffer. Note that this array can
change size.

	
class brian2hears.Filterbank(source)[source]

	Generalised filterbank object

Documentation common to all filterbanks

Filterbanks all share a few basic attributes:

	
source

	The source of the filterbank, a Bufferable object, e.g. another
Filterbank or a Sound. It can also be a tuple of
sources. Can be changed after the object
is created, although note that for some filterbanks this may cause
problems if they do make assumptions about the input based on the first
source object they were passed. If this is causing problems, you can
insert a dummy filterbank (DoNothingFilterbank) which is
guaranteed to work if you change the source.

	
nchannels

	The number of channels.

	
samplerate

	The sample rate.

	
duration

	The duration of the filterbank. If it is not specified by the user, it
is computed by finding the maximum of its source durations. If these are
not specified a KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] will be raised.

To process the output of a filterbank, the following method can be used:

	
process(func=None, duration=None, buffersize=32)[source]

	Returns the output of the filterbank for the given duration.

	func

	If a function is specified, it should be a function of one or two
arguments that will be called on each filtered buffered segment
(of shape (buffersize, nchannels) in order. If the function has
one argument, the argument should be buffered segment. If it has
two arguments, the second argument is the value returned by the
previous application of the function (or 0 for the first
application). In this case, the method will return the final
value returned by the function. See example below.

	duration=None

	The length of time (in seconds) or number of samples to process.
If no func is specified, the method will return an array of shape
(duration, nchannels) with the filtered outputs. Note that in
many cases, this will be too large to fit in memory, in which you
will want to process the filtered outputs online, by providing
a function func (see example below). If no duration is specified,
the maximum duration of the inputs to the filterbank will be used,
or an error raised if they do not have durations.

	buffersize=32

	The size of the buffered segments to fetch, as a length of time or
number of samples. 32 samples typically gives reasonably good
performance.

For example, to compute the RMS of each channel in a filterbank, you
would do:

def sum_of_squares(input, running_sum_of_squares):
 return running_sum_of_squares+sum(input**2, axis=0)
rms = sqrt(fb.process(sum_of_squares)/nsamples)

Alternatively, the buffer interface can be used, which is described in
more detail below.

Filterbank also defines arithmetical operations for +, -, *, / where the other
operand can be a filterbank or scalar.

Details on the class

This class is a base class not designed to be instantiated. A Filterbank
object should define the interface of Bufferable, as well as
defining a source attribute. This is normally a Bufferable
object, but could be an iterable of sources (for example, for filterbanks
that mix or add multiple inputs).

The buffer_fetch_next(samples) method has a default implementation
that fetches the next input, and calls the buffer_apply(input)
method on it, which can be overridden by a derived class. This is typically
the easiest way to implement a new filterbank. Filterbanks with multiple
sources will need to override this default implementation.

There is a default __init__ method that can be called by a derived class
that sets the source, nchannels and samplerate from that of the
source object. For multiple sources, the default implementation will
check that each source has the same number of channels and samplerate and
will raise an error if not.

There is a default buffer_init() method that calls buffer_init() on
the source (or list of sources).

Example of deriving a class

The following class takes N input channels and sums them to a single output
channel:

class AccumulateFilterbank(Filterbank):
 def __init__(self, source):
 Filterbank.__init__(self, source)
 self.nchannels = 1
 def buffer_apply(self, input):
 return reshape(sum(input, axis=1), (input.shape[0], 1))

Note that the default Filterbank.__init__ will set the number of
channels equal to the number of source channels, but we want to change it
to have a single output channel. We use the buffer_apply method which
automatically handles the efficient cacheing of the buffer for us. The
method receives the array input which has shape (bufsize, nchannels)
and sums over the channels (axis=1). It’s important to reshape the
output so that it has shape (bufsize, outputnchannels) so that it can
be used as the input to subsequent filterbanks.

	
class brian2hears.BaseSound[source]

	Base class for Sound and OnlineSound

Class diagram

[image: Inheritance diagram of Sound, Filterbank, LinearFilterbank, Gammatone, ApproximateGammatone, LogGammachirp, LinearGammachirp, LinearGaborchirp, Cascade, IIRFilterbank, Butterworth, LowPass, FIRFilterbank, RestructureFilterbank, Join, Interleave, Repeat, Tile, FunctionFilterbank, SumFilterbank, DoNothingFilterbank, ControlFilterbank, CombinedFilterbank, DRNL, DCGC, TanCarney, AsymmetricCompensation, HRTFDatabase, IRCAM_LISTEN, HeadlessDatabase]

Examples

[image: Sounds]
Sounds

[image: Cochleagram]
Cochleagram

[image: Online computation]
Online computation

[image: Logarithmic Gammachirp filters]
Logarithmic Gammachirp filters

[image: Linear Gammachirp filters]
Linear Gammachirp filters

[image: Auditory nerve fibre model]
Auditory nerve fibre model

[image: Gammatone filters]
Gammatone filters

[image: HRTFs]
HRTFs

[image: Approximate Gammatone filters]
Approximate Gammatone filters

[image: Cochlear models]
Cochlear models

[image: Butterworth filters]
Butterworth filters

[image: Artificial Vowels]
Artificial Vowels

[image: IIR filterbank]
IIR filterbank

[image: Dual resonance nonlinear filter (DRNL)]
Dual resonance nonlinear filter (DRNL)

[image: Time varying filter (1)]
Time varying filter (1)

[image: Time varying filter (2)]
Time varying filter (2)

[image: Sound localisation model]
Sound localisation model

[image: Compressive Gammachirp filter (DCGC)]
Compressive Gammachirp filter (DCGC)

Tan&Carney (2003)

	Tan, Q., and L. H. Carney.

	“A Phenomenological Model for the Responses of Auditory-nerve Fibers.
II. Nonlinear Tuning with a Frequency Glide”.
The Journal of the Acoustical Society of America 114 (2003): 2007.

[image: Response area and phase response in the Tan&Carney model]
Response area and phase response in the Tan&Carney model

[image: Spiking output of the Tan&Carney model]
Spiking output of the Tan&Carney model

[image: CF-dependence of compressive nonlinearity in the Tan&Carney model]
CF-dependence of compressive nonlinearity in the Tan&Carney model

Download all examples in Python source code: auto_examples_python.zip

Download all examples in Jupyter notebooks: auto_examples_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Sounds

Example of basic use and manipulation of sounds with Brian hears.

from brian2 import *
from brian2hears import *

sound1 = tone(1*kHz, 1*second)
sound2 = whitenoise(1*second)

sound = sound1+sound2
sound = sound.ramp()

Comment this line out if you don't have pygame installed
sound.play()

The first 20ms of the sound
startsound = sound[slice(0*ms, 20*ms)]

subplot(121)
plot(startsound.times, startsound)
subplot(122)
sound.spectrogram()
show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: sounds.py

Download Jupyter notebook: sounds.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Cochleagram

Example of basic filtering of a sound with Brian hears.
This example implements a cochleagram based on a gammatone filterbank
followed by halfwave rectification, cube root compression and 10 Hz
low pass filtering.

from brian2 import *
from brian2hears import *

sound1 = tone(1*kHz, .1*second)
sound2 = whitenoise(.1*second)

sound = sound1+sound2
sound = sound.ramp()

cf = erbspace(20*Hz, 20*kHz, 3000)
gammatone = Gammatone(sound, cf)
cochlea = FunctionFilterbank(gammatone, lambda x: clip(x, 0, Inf)**(1.0/3.0))
lowpass = LowPass(cochlea, 10*Hz)
output = lowpass.process()

imshow(output.T, origin='lower', aspect='auto', vmin=0)
show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: cochleagram.py

Download Jupyter notebook: cochleagram.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Online computation

Example of online computation using process().
Plots the RMS value of each channel output by a gammatone filterbank.

from brian2 import *
from brian2hears import *

sound1 = tone(1*kHz, .1*second)
sound2 = whitenoise(.1*second)

sound = sound1+sound2
sound = sound.ramp()

sound.level = 60*dB

cf = erbspace(20*Hz, 20*kHz, 3000)
fb = Gammatone(sound, cf)

def sum_of_squares(input, running):
 return running+sum(input**2, axis=0)

rms = sqrt(fb.process(sum_of_squares)/sound.nsamples)

sound_rms = sqrt(mean(sound**2))

axhline(sound_rms, ls='--')
plot(cf, rms)
xlabel('Frequency (Hz)')
ylabel('RMS')
show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: online_computation.py

Download Jupyter notebook: online_computation.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Logarithmic Gammachirp filters

Example of the use of the class LogGammachirp available in
the library. It implements a filterbank of IIR gammachirp filters as
Unoki et al. 2001, “Improvement of an IIR asymmetric compensation gammachirp
filter”. In this example, a white noise is filtered by a linear gammachirp
filterbank and the resulting cochleogram is plotted. The different impulse
responses are also plotted.

from brian2 import *
from brian2hears import *

sound = whitenoise(100*ms).ramp()
sound.level = 50*dB

nbr_center_frequencies = 50 #number of frequency channels in the filterbank

c1 = -2.96 #glide slope
b1 = 1.81 #factor determining the time constant of the filters

#center frequencies with a spacing following an ERB scale
cf = erbspace(100*Hz, 1000*Hz, nbr_center_frequencies)

gamma_chirp = LogGammachirp(sound, cf, c=c1, b=b1)

gamma_chirp_mon = gamma_chirp.process()

figure()
imshow(flipud(gamma_chirp_mon.T), aspect='auto')
show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: log_gammachirp.py

Download Jupyter notebook: log_gammachirp.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Linear Gammachirp filters

Example of the use of the class LinearGammachirp available
in the library. It implements a filterbank of FIR gammatone filters with linear
frequency sweeps as described in Wagner et al. 2009, “Auditory responses in the
barn owl’s nucleus laminaris to clicks: impulse response and signal analysis of
neurophonic potential”, J. Neurophysiol. In this example, a white noise is
filtered by a gammachirp filterbank and the resulting cochleogram is plotted.
The different impulse responses are also plotted.

from brian2 import *
from brian2hears import *

sound = whitenoise(100*ms).ramp()
sound.level = 50*dB

nbr_center_frequencies = 10 #number of frequency channels in the filterbank
#center frequencies with a spacing following an ERB scale
center_frequencies = erbspace(100*Hz, 1000*Hz, nbr_center_frequencies)

c = 0.0 #glide slope
time_constant = linspace(3, 0.3, nbr_center_frequencies)*ms

gamma_chirp = LinearGammachirp(sound, center_frequencies, time_constant, c)

gamma_chirp_mon = gamma_chirp.process()

figure()

imshow(gamma_chirp_mon.T, aspect='auto')
figure()
plot(gamma_chirp.impulse_response.T)
show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: linear_gammachirp.py

Download Jupyter notebook: linear_gammachirp.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Auditory nerve fibre model

Example of a simple auditory nerve fibre model with Brian hears.

from brian2 import *
from brian2hears import *

sound1 = tone(1*kHz, .1*second)
sound2 = whitenoise(.1*second)

sound = sound1+sound2
sound = sound.ramp()

cf = erbspace(20*Hz, 20*kHz, 3000)
cochlea = Gammatone(sound, cf)

Half-wave rectification and compression [x]^(1/3)
ihc = FunctionFilterbank(cochlea, lambda x: 3*clip(x, 0, Inf)**(1.0/3.0))

Leaky integrate-and-fire model with noise and refractoriness
eqs = '''
dv/dt = (I-v)/(1*ms)+0.2*xi*(2/(1*ms))**.5 : 1 (unless refractory)
I : 1
'''
anf = FilterbankGroup(ihc, 'I', eqs, reset='v=0', threshold='v>1', refractory=5*ms, method='euler')

M = SpikeMonitor(anf)
run(sound.duration)
plot(M.t/ms, M.i, ',k')
show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: simple_anf.py

Download Jupyter notebook: simple_anf.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Gammatone filters

Example of the use of the class Gammatone available in the
library. It implements a fitlerbank of IIR gammatone filters as
described in Slaney, M., 1993, “An Efficient Implementation of the
Patterson-Holdsworth Auditory Filter Bank”. Apple Computer Technical Report #35.
In this example, a white noise is filtered by a gammatone filterbank and the
resulting cochleogram is plotted.

from brian2 import *
from brian2hears import *
from matplotlib import pyplot

sound = whitenoise(100*ms).ramp()
sound.level = 50*dB

nbr_center_frequencies = 50
b1 = 1.019 #factor determining the time constant of the filters
#center frequencies with a spacing following an ERB scale
center_frequencies = erbspace(100*Hz, 1000*Hz, nbr_center_frequencies)
gammatone = Gammatone(sound, center_frequencies, b=b1)

gt_mon = gammatone.process()

figure()
imshow(gt_mon.T, aspect='auto', origin='lower',
 extent=(0, sound.duration/ms,
 center_frequencies[0]/Hz, center_frequencies[-1]/Hz))
pyplot.yscale('log')
title('Cochleogram')
ylabel('Frequency (Hz)')
xlabel('Time (ms)')

show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: gammatone.py

Download Jupyter notebook: gammatone.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

HRTFs

Example showing the use of HRTFs in Brian hears. Note that you will need to
download the IRCAM_LISTEN database and set the IRCAM_LISTEN environment variable to point to the location
where you saved it.

from brian2 import *
from brian2hears import *
Load database
hrtfdb = IRCAM_LISTEN()
hrtfset = hrtfdb.load_subject(hrtfdb.subjects[0])
Select only the horizontal plane
hrtfset = hrtfset.subset(lambda elev: elev==0)
Set up a filterbank
sound = whitenoise(10*ms)
fb = hrtfset.filterbank(sound)
Extract the filtered response and plot
img = fb.process().T
img_left = img[:img.shape[0]//2, :]
img_right = img[img.shape[0]//2:, :]
subplot(121)
imshow(img_left, origin='lower', aspect='auto',
 extent=(0, sound.duration/ms, 0, 360))
xlabel('Time (ms)')
ylabel('Azimuth')
title('Left ear')
subplot(122)
imshow(img_right, origin='lower', aspect='auto',
 extent=(0, sound.duration/ms, 0, 360))
xlabel('Time (ms)')
ylabel('Azimuth')
title('Right ear')
show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: ircam_hrtf.py

Download Jupyter notebook: ircam_hrtf.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Approximate Gammatone filters

Example of the use of the class ApproximateGammatone
available in the library. It implements a filterbank of approximate gammatone
filters as described in Hohmann, V., 2002, “Frequency analysis and synthesis
using a Gammatone filterbank”, Acta Acustica United with Acustica.
In this example, a white noise is filtered by a gammatone filterbank and the
resulting cochleogram is plotted.

from brian2 import *
from brian2hears import whitenoise, erbspace, dB
from brian2hears.filtering.filterbanklibrary import ApproximateGammatone

level=50*dB # level of the input sound in rms dB SPL
sound = whitenoise(100*ms).ramp() # generation of a white noise
sound = sound.atlevel(level) # set the sound to a certain dB level

nbr_center_frequencies = 50 # number of frequency channels in the filterbank
center frequencies with a spacing following an ERB scale
center_frequencies = erbspace(100*Hz, 1000*Hz, nbr_center_frequencies)
bandwidth of the filters (different in each channel)
bw = 10**(0.037+0.785*log10(center_frequencies/Hz))

gammatone = ApproximateGammatone(sound, center_frequencies, bw, order=3)

gt_mon = gammatone.process()

figure()
imshow(flipud(gt_mon.T), aspect='auto')
show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: approximate_gammatone.py

Download Jupyter notebook: approximate_gammatone.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Cochlear models

Example of the use of the cochlear models (DRNL,
DCGC and TanCarney) available in the library.

from brian2 import *
from brian2hears import *

simulation_duration = 50*ms
set_default_samplerate(50*kHz)
sound = whitenoise(simulation_duration)
sound = sound.atlevel(50*dB) # level in rms dB SPL
cf = erbspace(100*Hz, 1000*Hz, 50) # centre frequencies

param_drnl = {}
param_drnl['lp_nl_cutoff_m'] = 1.1

param_dcgc = {}
param_dcgc['c1'] = -2.96

figure(figsize=(10, 4))
for i, (model, param) in enumerate([(DRNL, param_drnl),
 (DCGC, param_dcgc),
 (TanCarney, None)]):
 fb = model(sound, cf, param=param)
 out = fb.process()
 subplot(1, 3, i+1)
 title(model.__name__)
 imshow(flipud(out.T), aspect='auto', extent=(0, simulation_duration/ms, 0, len(cf)-1))
 xlabel('Time (ms)')
 if i==0:
 ylabel('CF (kHz)')
 yticks([0, len(cf)-1], [cf[0]/kHz, cf[-1]/kHz])
 else:
 yticks([])

tight_layout()
show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: cochlear_models.py

Download Jupyter notebook: cochlear_models.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Butterworth filters

Example of the use of the class Butterworth available in
the library. In this example, a white noise is filtered by a bank of butterworth
bandpass filters and lowpass filters which are different for every channels. The
centre or cutoff frequency of the filters are linearly taken between 100kHz and
1000kHz and its bandwidth frequency increases linearly with frequency.

from brian2 import *
from brian2hears import *

level = 50*dB # level of the input sound in rms dB SPL
sound = whitenoise(100*ms).ramp()
sound = sound.atlevel(level)
order = 2 #order of the filters

example of a bank of bandpass filter
nchannels = 50
center_frequencies = linspace(100*Hz, 1000*Hz, nchannels)
bw = linspace(50*Hz, 300*Hz, nchannels) # bandwidth of the filters
#arrays of shape (2 x nchannels) defining the passband frequencies (Hz)
fc = vstack((center_frequencies-bw/2, center_frequencies+bw/2))

filterbank = Butterworth(sound, nchannels, order, fc, 'bandpass')

filterbank_mon = filterbank.process()

figure()
subplot(211)
imshow(flipud(filterbank_mon.T), aspect='auto')

example of a bank of lowpass filter
nchannels = 50
cutoff_frequencies = linspace(200*Hz, 1000*Hz, nchannels)

filterbank = Butterworth(sound, nchannels, order, cutoff_frequencies, 'low')

filterbank_mon = filterbank.process()

subplot(212)
imshow(flipud(filterbank_mon.T), aspect='auto')
show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: butterworth.py

Download Jupyter notebook: butterworth.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Artificial Vowels

This example implements the artificial vowels from
Culling, J. F. and Summerfield, Q. (1995a). “Perceptual segregation of
concurrent speech sounds: absence of across-frequency grouping by common
interaural delay” J. Acoust. Soc. Am. 98, 785-797.

from brian2 import *
from brian2hears import *

duration = 409.6*ms
width = 150*Hz/2
samplerate = 10*kHz

set_default_samplerate(samplerate)

centres = [225*Hz, 625*Hz, 975*Hz, 1925*Hz]
vowels = {
 'ee':[centres[0], centres[3]],
 'ar':[centres[1], centres[2]],
 'oo':[centres[0], centres[2]],
 'er':[centres[1], centres[3]]
 }

def generate_vowel(vowel):
 vowel = vowels[vowel]
 x = whitenoise(duration)
 y = fft(asarray(x).flatten())
 f = fftfreq(len(x), 1/samplerate)
 I = zeros(len(f), dtype=bool)
 for cf in vowel:
 I = I|((abs(f)<cf+width)&(abs(f)>cf-width))
 I = ~I
 y[I] = 0
 x = ifft(y)
 return Sound(x.real)

v1 = generate_vowel('ee').ramp()
v2 = generate_vowel('ar').ramp()
v3 = generate_vowel('oo').ramp()
v4 = generate_vowel('er').ramp()

for s in [v1, v2, v3, v4]:
 s.play(normalise=True, sleep=True)

s1 = Sound((v1, v2))
#s1.play(normalise=True, sleep=True)

s2 = Sound((v3, v4))
#s2.play(normalise=True, sleep=True)

v1.save('mono_sound.wav')
s1.save('stereo_sound.wav')

subplot(211)
plot(v1.times, v1)
subplot(212)
v1.spectrogram()
show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: artificial_vowels.py

Download Jupyter notebook: artificial_vowels.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

IIR filterbank

Example of the use of the class IIRFilterbank available in
the library. In this example, a white noise is filtered by a bank of chebyshev
bandpass filters and lowpass filters which are different for every channels.
The centre frequencies of the filters are linearly taken between 100kHz and
1000kHz and its bandwidth or cutoff frequency increases linearly with frequency.

from brian2 import *
from brian2hears import *

sound = whitenoise(100*ms).ramp()
sound.level = 50*dB

example of a bank of bandpass filter
nchannels = 50
center_frequencies = linspace(200*Hz, 1000*Hz, nchannels) #center frequencies
bw = linspace(50*Hz, 300*Hz, nchannels) #bandwidth of the filters
The maximum loss in the passband in dB. Can be a scalar or an array of length
nchannels
gpass = 1.*dB
The minimum attenuation in the stopband in dB. Can be a scalar or an array
of length nchannels
gstop = 10.*dB
#arrays of shape (2 x nchannels) defining the passband frequencies (Hz)
passband = vstack((center_frequencies-bw/2, center_frequencies+bw/2))
#arrays of shape (2 x nchannels) defining the stopband frequencies (Hz)
stopband = vstack((center_frequencies-1.1*bw, center_frequencies+1.1*bw))

filterbank = IIRFilterbank(sound, nchannels, passband, stopband, gpass, gstop,
 'bandstop', 'cheby1')
filterbank_mon = filterbank.process()

figure()
subplot(211)
imshow(flipud(filterbank_mon.T), aspect='auto')

example of a bank of lowpass filter
nchannels = 50
cutoff_frequencies = linspace(100*Hz, 1000*Hz, nchannels)
#bandwidth of the transition region between the en of the pass band and the
#begin of the stop band
width_transition = linspace(50*Hz, 300*Hz, nchannels)
The maximum loss in the passband in dB. Can be a scalar or an array of length
nchannels
gpass = 1*dB
The minimum attenuation in the stopband in dB. Can be a scalar or an array of
length nchannels
gstop = 10*dB
passband = cutoff_frequencies-width_transition/2
stopband = cutoff_frequencies+width_transition/2

filterbank = IIRFilterbank(sound, nchannels, passband, stopband, gpass, gstop,
 'low','cheby1')
filterbank_mon=filterbank.process()

subplot(212)
imshow(flipud(filterbank_mon.T), aspect='auto')
show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: IIRfilterbank.py

Download Jupyter notebook: IIRfilterbank.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Dual resonance nonlinear filter (DRNL)

Implementation example of the dual resonance nonlinear (DRNL) filter with
parameters fitted for human as described in Lopez-Paveda, E. and Meddis, R., A
human nonlinear cochlear filterbank, JASA 2001.

A class called DRNL implementing this model is available
in the library.

The entire pathway consists of the sum of a linear and a nonlinear pathway.

The linear path consists of a bank of bandpass filters (second order gammatone),
a low pass function, and a gain/attenuation factor, g, in a cascade.

The nonlinear path is a cascade consisting of a bank of gammatone filters, a
compression function, a second bank of gammatone filters, and a low
pass function, in that order.

The parameters are given in the form 10**(p0+mlog10(cf)).

from brian2 import *
from brian2hears import *

simulation_duration = 50*ms
samplerate = 50*kHz
level = 50*dB # level of the input sound in rms dB SPL
sound = whitenoise(simulation_duration, samplerate).ramp()
sound.level = level

nbr_cf = 50 #number of centre frequencies
#center frequencies with a spacing following an ERB scale
center_frequencies = erbspace(100*Hz,1000*Hz, nbr_cf)
center_frequencies = asarray(center_frequencies) # avoid units issues

#conversion to stape velocity (which are the units needed by the following centres)
sound = sound*0.00014

Linear Pathway

#bandpass filter (second order gammatone filter)
center_frequencies_linear = 10**(-0.067+1.016*log10(center_frequencies))
bandwidth_linear = 10**(0.037+0.785*log10(center_frequencies))
order_linear = 3
gammatone = ApproximateGammatone(sound, center_frequencies_linear,
 bandwidth_linear, order=order_linear)

#linear gain
g = 10**(4.2-0.48*log10(center_frequencies))
func_gain = lambda x:g*x
gain = FunctionFilterbank(gammatone, func_gain)

#low pass filter(cascade of 4 second order lowpass butterworth filters)
cutoff_frequencies_linear = center_frequencies_linear
order_lowpass_linear = 2
lp_l = LowPass(gain, cutoff_frequencies_linear)
lowpass_linear = Cascade(gain, lp_l, 4)

Nonlinear Pathway

#bandpass filter (third order gammatone filters)
center_frequencies_nonlinear = center_frequencies
bandwidth_nonlinear = 10**(-0.031+0.774*log10(center_frequencies))
order_nonlinear = 3
bandpass_nonlinear1 = ApproximateGammatone(sound, center_frequencies_nonlinear,
 bandwidth_nonlinear,
 order=order_nonlinear)

#compression (linear at low level, compress at high level)
a = 10**(1.402+0.819*log10(center_frequencies)) #linear gain
b = 10**(1.619-0.818*log10(center_frequencies))
v = .2 #compression exponent
func_compression = lambda x: sign(x)*minimum(a*abs(x), b*abs(x)**v)
compression = FunctionFilterbank(bandpass_nonlinear1, func_compression)

#bandpass filter (third order gammatone filters)
bandpass_nonlinear2 = ApproximateGammatone(compression,
 center_frequencies_nonlinear,
 bandwidth_nonlinear,
 order=order_nonlinear)

#low pass filter
cutoff_frequencies_nonlinear = center_frequencies_nonlinear
order_lowpass_nonlinear = 2
lp_nl = LowPass(bandpass_nonlinear2, cutoff_frequencies_nonlinear)
lowpass_nonlinear = Cascade(bandpass_nonlinear2, lp_nl, 3)

#adding the two pathways
dnrl_filter = lowpass_linear+lowpass_nonlinear

dnrl = dnrl_filter.process()

figure()
imshow(flipud(dnrl.T), aspect='auto')
show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: drnl.py

Download Jupyter notebook: drnl.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Time varying filter (1)

This example implements a band pass filter whose center frequency is modulated
by an Ornstein-Uhlenbeck. The white noise term used for this process is output
by a FunctionFilterbank. The bandpass filter coefficients update is an example
of how to use a ControlFilterbank. The bandpass filter is
a basic biquadratic filter for which the Q factor and the center frequency must
be given. The input is a white noise.

from brian2 import *
from brian2hears import *

samplerate = 20*kHz
SoundDuration = 300*ms
sound = whitenoise(SoundDuration, samplerate).ramp()

#number of frequency channel (here it must be one as a spectrogram of the
#output is plotted)
nchannels = 1

fc_init = 5000*Hz #initial center frequency of the band pass filter
Q = 5 #quality factor of the band pass filter
update_interval = 4 # the filter coefficients are updated every 4 samples

#parameters of the Ornstein-Uhlenbeck process
s_i = 1200*Hz
tau_i = 100*ms
mu_i = fc_init/tau_i
sigma_i = sqrt(2)*s_i/sqrt(tau_i)
deltaT = defaultclock.dt

#this function is used in a FunctionFilterbank. It outputs a noise term that
#will be later used by the controler to update the center frequency
noise = lambda x: mu_i*deltaT+sigma_i*randn(1)*sqrt(deltaT)
noise_generator = FunctionFilterbank(sound, noise)

#this class will take as input the output of the noise generator and as target
#the bandpass filter center frequency
class CoeffController(object):
 def __init__(self, target):
 self.target = target
 self.deltaT = 1./samplerate
 self.BW = 2*arcsinh(1./2/Q)*1.44269
 self.fc = fc_init

 def __call__(self, input):
 #the control variables are taken as the last of the buffer
 noise_term = input[-1,:]
 #update the center frequency by updateing the OU process
 self.fc = asarray(self.fc-self.fc/tau_i*self.deltaT)+noise_term

 w0 = 2*pi*self.fc/float(samplerate)
 #update the coefficient of the biquadratic filterbank
 alpha = sin(w0)*sinh(log(2)/2*self.BW*w0/sin(w0))
 self.target.filt_b[:, 0, 0] = sin(w0)/2
 self.target.filt_b[:, 1, 0] = 0
 self.target.filt_b[:, 2, 0] = -sin(w0)/2

 self.target.filt_a[:, 0, 0] = 1+alpha
 self.target.filt_a[:, 1, 0] = -2*cos(w0)
 self.target.filt_a[:, 2, 0] = 1-alpha

In the present example the time varying filter is a LinearFilterbank therefore
#we must initialise the filter coefficients; the one used for the first buffer computation
w0 = 2*pi*fc_init/samplerate
BW = 2*arcsinh(1./2/Q)*1.44269
alpha = sin(w0)*sinh(log(2)/2*BW*w0/sin(w0))

filt_b = zeros((nchannels, 3, 1))
filt_a = zeros((nchannels, 3, 1))
filt_b[:, 0, 0] = sin(w0)/2
filt_b[:, 1, 0] = 0
filt_b[:, 2, 0] = -sin(w0)/2
filt_a[:, 0, 0] = 1+alpha
filt_a[:, 1, 0] = -2*cos(w0)
filt_a[:, 2, 0] = 1-alpha

#the filter which will have time varying coefficients
bandpass_filter = LinearFilterbank(sound, filt_b, filt_a)
#the updater
updater = CoeffController(bandpass_filter)

#the controller. Remember it must be the last of the chain
control = ControlFilterbank(bandpass_filter, noise_generator, bandpass_filter,
 updater, update_interval)

time_varying_filter_mon = control.process()

figure(1)
pxx, freqs, bins, im = specgram(squeeze(time_varying_filter_mon),
 NFFT=256, Fs=float(samplerate), noverlap=240)
imshow(flipud(pxx), aspect='auto')

show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: time_varying_filter1.py

Download Jupyter notebook: time_varying_filter1.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Time varying filter (2)

This example implements a band pass filter whose center frequency is modulated by
a sinusoid function. This modulator is implemented as a
FunctionFilterbank. One state variable (here time) must
be kept; it is therefore implemented with a class.
The bandpass filter coefficients update is an example of how to use a
ControlFilterbank. The bandpass filter is a basic
biquadratic filter for which the Q factor and the center
frequency must be given. The input is a white noise.

from brian2 import *
from brian2hears import *

samplerate = 20*kHz
SoundDuration = 300*ms
sound = whitenoise(SoundDuration, samplerate).ramp()

#number of frequency channel (here it must be one as a spectrogram of the
#output is plotted)
nchannels = 1

fc_init = 5000*Hz #initial center frequency of the band pass filter
Q = 5 #quality factor of the band pass filter
update_interval = 1 # the filter coefficients are updated every sample

mean_center_freq = 4*kHz #mean frequency around which the CF will oscillate
amplitude = 1500*Hz #amplitude of the oscillation
frequency = 10*Hz #frequency of the oscillation

#this class is used in a FunctionFilterbank (via its __call__). It outputs the
#center frequency of the band pass filter. Its output is thus later passed as
#input to the controler.
class CenterFrequencyGenerator(object):
 def __init__(self):
 self.t=0*second

 def __call__(self, input):
 #update of the center frequency
 fc = mean_center_freq+amplitude*sin(2*pi*frequency*self.t)
 #update of the state variable
 self.t = self.t+1./samplerate
 return fc

center_frequency = CenterFrequencyGenerator()

fc_generator = FunctionFilterbank(sound, center_frequency)

#the updater of the controller generates new filter coefficient of the band pass
#filter based on the center frequency it receives from the fc_generator
#(its input)
class CoeffController(object):
 def __init__(self, target):
 self.BW = 2*arcsinh(1./2/Q)*1.44269
 self.target=target

 def __call__(self, input):
 fc = input[-1,:] #the control variables are taken as the last of the buffer
 w0 = 2*pi*fc/array(samplerate)
 alpha = sin(w0)*sinh(log(2)/2*self.BW*w0/sin(w0))

 self.target.filt_b[:, 0, 0] = sin(w0)/2
 self.target.filt_b[:, 1, 0] = 0
 self.target.filt_b[:, 2, 0] = -sin(w0)/2

 self.target.filt_a[:, 0, 0] = 1+alpha
 self.target.filt_a[:, 1, 0] = -2*cos(w0)
 self.target.filt_a[:, 2, 0] = 1-alpha

In the present example the time varying filter is a LinearFilterbank therefore
#we must initialise the filter coefficients; the one used for the first buffer computation
w0 = 2*pi*fc_init/samplerate
BW = 2*arcsinh(1./2/Q)*1.44269
alpha = sin(w0)*sinh(log(2)/2*BW*w0/sin(w0))

filt_b = zeros((nchannels, 3, 1))
filt_a = zeros((nchannels, 3, 1))

filt_b[:, 0, 0] = sin(w0)/2
filt_b[:, 1, 0] = 0
filt_b[:, 2, 0] = -sin(w0)/2

filt_a[:, 0, 0] = 1+alpha
filt_a[:, 1, 0] = -2*cos(w0)
filt_a[:, 2, 0] = 1-alpha

#the filter which will have time varying coefficients
bandpass_filter = LinearFilterbank(sound, filt_b, filt_a)
#the updater
updater = CoeffController(bandpass_filter)

#the controller. Remember it must be the last of the chain
control = ControlFilterbank(bandpass_filter, fc_generator, bandpass_filter,
 updater, update_interval)

time_varying_filter_mon = control.process()

figure(1)
pxx, freqs, bins, im = specgram(squeeze(time_varying_filter_mon),
 NFFT=256, Fs=float(samplerate), noverlap=240)
imshow(flipud(pxx), aspect='auto')

show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: time_varying_filter2.py

Download Jupyter notebook: time_varying_filter2.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Sound localisation model

Example demonstrating the use of many features of Brian hears, including
HRTFs, restructuring filters and integration with Brian. Implements a
simplified version of the “ideal” sound localisation model from Goodman
and Brette (2010).

The sound is played at a particular spatial location (indicated on the final
plot by a red +). Each location has a corresponding assembly of neurons, whose
summed firing rates give the sizes of the blue circles in the plot. The most
strongly responding assembly is indicated by the green x, which is the estimate
of the location by the model.

Note that you will need to
download the IRCAM_LISTEN database and set the IRCAM_LISTEN environment
variable to point to the location where you saved it.

Reference:

Goodman DFM, Brette R (2010). Spike-timing-based computation in sound
localization. PLoS Comput. Biol. 6(11) [http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000993].

from brian2 import *
from brian2hears import *

Download the IRCAM database, and replace this filename with the location
you downloaded it to
hrtfdb = IRCAM_LISTEN()
subject = hrtfdb.subjects[0]
hrtfset = hrtfdb.load_subject(subject)
This gives the number of spatial locations in the set of HRTFs
num_indices = hrtfset.num_indices
Choose a random location for the sound to come from
index = randint(hrtfset.num_indices)
A sound to test the model with
sound = Sound.whitenoise(500*ms)
This is the specific HRTF for the chosen location
hrtf = hrtfset.hrtf[index]
We apply the chosen HRTF to the sound, the output has 2 channels
hrtf_fb = hrtf.filterbank(sound)
We swap these channels (equivalent to swapping the channels in the
subsequent filters, but simpler to do it with the inputs)
swapped_channels = RestructureFilterbank(hrtf_fb, indexmapping=[1, 0])
Now we apply all of the possible pairs of HRTFs in the set to these
swapped channels, which means repeating them num_indices times first
hrtfset_fb = hrtfset.filterbank(Repeat(swapped_channels, num_indices))
Now we apply cochlear filtering (logically, this comes before the HRTF
filtering, but since convolution is commutative it is more efficient to
do the cochlear filtering afterwards
cfmin, cfmax, cfN = 150*Hz, 5*kHz, 40
cf = erbspace(cfmin, cfmax, cfN)
We repeat each of the HRTFSet filterbank channels cfN times, so that
for each location we will apply each possible cochlear frequency
gfb = Gammatone(Repeat(hrtfset_fb, cfN),
 tile(cf, hrtfset_fb.nchannels))
Half wave rectification and compression
cochlea = FunctionFilterbank(gfb, lambda x:15*clip(x, 0, Inf)**(1.0/3.0))
Leaky integrate and fire neuron model
eqs = '''
dV/dt = (I-V)/(1*ms)+0.1*xi/(0.5*ms)**.5 : 1 (unless refractory)
I : 1
'''
G = FilterbankGroup(cochlea, 'I', eqs, reset='V=0', threshold='V>1', refractory=5*ms, method='Euler')
The coincidence detector (cd) neurons
cd = NeuronGroup(num_indices*cfN, eqs, reset='V=0', threshold='V>1', refractory=1*ms, method='Euler', dt=G.dt[:])
Each CD neuron receives precisely two inputs, one from the left ear and
one from the right, for each location and each cochlear frequency
C = Synapses(G, cd, on_pre='V += 0.5', dt=G.dt[:])
C.connect(j='i', skip_if_invalid=True)
C.connect(j='i-num_indices*cfN', skip_if_invalid=True)
We want to just count the number of CD spikes
counter = SpikeMonitor(cd, record=False)
Run the simulation, giving a report on how long it will take as we run
run(sound.duration, report='stderr')
We take the array of counts, and reshape them into a 2D array which we sum
across frequencies to get the spike count of each location-specific assembly
count = counter.count[:].copy()
count.shape = (num_indices, cfN)
count = sum(count, axis=1)
count = array(count, dtype=float)/amax(count)
Our guess of the location is the index of the strongest firing assembly
index_guess = argmax(count)
Now we plot the output, using the coordinates of the HRTFSet
coords = hrtfset.coordinates
azim, elev = coords['azim'], coords['elev']
scatter(azim, elev, 100*count)
plot([azim[index]], [elev[index]], '+r', ms=15, mew=2)
plot([azim[index_guess]], [elev[index_guess]], 'xg', ms=15, mew=2)
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
xlim(-5, 350)
ylim(-50, 95)
show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: sound_localisation_model.py

Download Jupyter notebook: sound_localisation_model.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Compressive Gammachirp filter (DCGC)

Implementation example of the compressive gammachirp auditory filter as
described in Irino, T. and Patterson R., “A compressive gammachirp auditory
filter for both physiological and psychophysical data”, JASA 2001.

A class called DCGC implementing this model is available
in the library.

Technical implementation details and notation can be found in Irino, T. and
Patterson R., “A Dynamic Compressive Gammachirp Auditory Filterbank”,
IEEE Trans Audio Speech Lang Processing.

from brian2 import *
from brian2hears import *

simulation_duration = 50*ms
samplerate = 50*kHz
level = 50*dB # level of the input sound in rms dB SPL
sound = whitenoise(simulation_duration, samplerate).ramp()
sound = sound.atlevel(level)

nbr_cf = 50 # number of centre frequencies
center frequencies with a spacing following an ERB scale
cf = erbspace(100*Hz, 1000*Hz, nbr_cf)

c1 = -2.96 #glide slope of the first filterbank
b1 = 1.81 #factor determining the time constant of the first filterbank
c2 = 2.2 #glide slope of the second filterbank
b2 = 2.17 #factor determining the time constant of the second filterbank

order_ERB = 4
ERBrate = 21.4*log10(4.37*(cf/kHz)+1)
ERBwidth = 24.7*(4.37*(cf/kHz) + 1)
ERBspace = mean(diff(ERBrate))

the filter coefficients are updated every update_interval (here in samples)
update_interval = 1

#bank of passive gammachirp filters. As the control path uses the same passive
#filterbank than the signal path (but shifted in frequency)
#this filterbank is used by both pathway.
pGc = LogGammachirp(sound, cf, b=b1, c=c1)

fp1 = asarray(cf) + c1*ERBwidth*b1/order_ERB #centre frequency of the signal path

Control Path

#the first filterbank in the control path consists of gammachirp filters
#value of the shift in ERB frequencies of the control path with respect to the signal path
lct_ERB = 1.5
n_ch_shift = round(lct_ERB/ERBspace) #value of the shift in channels
#index of the channel of the control path taken from pGc
indch1_control = minimum(maximum(1, arange(1, nbr_cf+1)+n_ch_shift), nbr_cf).astype(int)-1
fp1_control = fp1[indch1_control]
#the control path bank pass filter uses the channels of pGc indexed by indch1_control
pGc_control = RestructureFilterbank(pGc, indexmapping=indch1_control)

#the second filterbank in the control path consists of fixed asymmetric compensation filters
frat_control = 1.08
fr2_control = frat_control*fp1_control
asym_comp_control = AsymmetricCompensation(pGc_control, fr2_control, b=b2, c=c2)

#definition of the pole of the asymmetric comensation filters
p0 = 2
p1 = 1.7818*(1-0.0791*b2)*(1-0.1655*abs(c2))
p2 = 0.5689*(1-0.1620*b2)*(1-0.0857*abs(c2))
p3 = 0.2523*(1-0.0244*b2)*(1+0.0574*abs(c2))
p4 = 1.0724

#definition of the parameters used in the control path output levels computation
#(see IEEE paper for details)
decay_tcst = .5*ms
order = 1.
lev_weight = .5
level_ref = 50.
level_pwr1 = 1.5
level_pwr2 = .5
RMStoSPL = 30.
frat0 = .2330
frat1 = .005
exp_deca_val = exp(-1/(decay_tcst*samplerate)*log(2))
level_min = 10**(-RMStoSPL/20)

#definition of the controller class. What is does it take the outputs of the
#first and second fitlerbanks of the control filter as input, compute an overall
#intensity level for each frequency channel. It then uses those level to update
#the filter coefficient of its target, the asymmetric compensation filterbank of
#the signal path.
class CompensensationFilterUpdater(object):
 def __init__(self, target):
 self.target = target
 self.level1_prev = -100
 self.level2_prev = -100

 def __call__(self, *input):
 value1 = input[0][-1,:]
 value2 = input[1][-1,:]
 #the current level value is chosen as the max between the current
 #output and the previous one decreased by a decay
 level1 = maximum(maximum(value1, 0), self.level1_prev*exp_deca_val)
 level2 = maximum(maximum(value2, 0), self.level2_prev*exp_deca_val)

 self.level1_prev = level1 #the value is stored for the next iteration
 self.level2_prev = level2
 #the overall intensity is computed between the two filterbank outputs
 level_total = lev_weight*level_ref*(level1/level_ref)**level_pwr1+\
 (1-lev_weight)*level_ref*(level2/level_ref)**level_pwr2
 #then it is converted in dB
 level_dB = 20*log10(maximum(level_total, level_min))+RMStoSPL
 #the frequency factor is calculated
 frat = frat0 + frat1*level_dB
 #the centre frequency of the asymmetric compensation filters are updated
 fr2 = fp1*frat
 coeffs = asymmetric_compensation_coeffs(samplerate, fr2,
 self.target.filt_b, self.target.filt_a, b2, c2,
 p0, p1, p2, p3, p4)
 self.target.filt_b, self.target.filt_a = coeffs

Signal Path
#the signal path consists of the passive gammachirp filterbank pGc previously
#defined followed by a asymmetric compensation filterbank
fr1 = fp1*frat0
varyingfilter_signal_path = AsymmetricCompensation(pGc, fr1, b=b2, c=c2)
updater = CompensensationFilterUpdater(varyingfilter_signal_path)
 #the controler which takes the two filterbanks of the control path as inputs
 #and the varying filter of the signal path as target is instantiated
control = ControlFilterbank(varyingfilter_signal_path,
 [pGc_control, asym_comp_control],
 varyingfilter_signal_path, updater, update_interval)

#run the simulation
#Remember that the controler are at the end of the chain and the output of the
#whole path comes from them
signal = control.process()

figure()
imshow(flipud(signal.T), aspect='auto')
show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: dcgc.py

Download Jupyter notebook: dcgc.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Response area and phase response in the Tan&Carney model

Response area and phase response of a model fiber with CF=2200Hz in the
Tan&Carney model. Reproduces Fig. 11 from:

	Tan, Q., and L. H. Carney.

	“A Phenomenological Model for the Responses of Auditory-nerve Fibers.
II. Nonlinear Tuning with a Frequency Glide”.
The Journal of the Acoustical Society of America 114 (2003): 2007.

import matplotlib.pyplot as plt
import numpy as np

from brian2 import *
from brian2hears import *
from six.moves import range as xrange

def product(*args):
 # Simple (and inefficient) variant of itertools.product that works for
 # Python 2.5 (directly returns a list instead of yielding one item at a
 # time)
 pools = map(tuple, args)
 result = [[]]
 for pool in pools:
 result = [x+[y] for x in result for y in pool]
 return result

duration = 50*ms
samplerate = 50*kHz
set_default_samplerate(samplerate)
CF = 2200
freqs = np.arange(250.0, 3501., 50.)*Hz
levels = [10, 30, 50, 70, 90]
cf_level = product(freqs, levels)
tones = Sound([Sound.sequence([tone(freq, duration).atlevel(level*dB).ramp(when='both',
 duration=2.5*ms,
 inplace=False)])
 for freq, level in cf_level])

ihc = TanCarney(MiddleEar(tones), [CF] * len(cf_level), update_interval=2)
syn = ZhangSynapse(ihc, CF)
s_mon = StateMonitor(syn, 's', record=True, clock=syn.clock)
net = Network(syn, s_mon)
net.run(duration)

reshaped = s_mon.s[:].reshape((len(freqs), len(levels), -1))

calculate the phase with respect to the stimulus
pi = np.pi
min_freq, max_freq = 1100*Hz, 2900*Hz
freq_subset = freqs[(freqs>=min_freq) & (freqs<=max_freq)]
reshaped_subset = reshaped[(freqs>=min_freq) & (freqs<=max_freq), :, :]
phases = np.zeros((reshaped_subset.shape[0], len(levels)))
for f_idx, freq in enumerate(freq_subset):
 period = 1.0 / freq
 for l_idx in xrange(len(levels)):
 phase_angles = np.arange(reshaped_subset.shape[2])/samplerate % period / period * 2*pi
 temp_phases = (np.exp(1j * phase_angles) *
 reshaped_subset[f_idx, l_idx, :]/Hz)
 phases[f_idx, l_idx] = np.angle(np.sum(temp_phases))

plt.subplot(2, 1, 1)
rate = reshaped.mean(axis=2)
plt.plot(freqs, rate)
plt.ylabel('Spikes/sec')
plt.legend(['%.0f dB' % level for level in levels], loc='best')
plt.xlim(0, 4000)
plt.ylim(0, 250)

plt.subplot(2, 1, 2)
relative_phases = (phases.T - phases[:, -1]).T
relative_phases[relative_phases > pi] = relative_phases[relative_phases > pi] - 2*pi
relative_phases[relative_phases < -pi] = relative_phases[relative_phases < -pi] + 2*pi
plt.plot(freq_subset, relative_phases / pi)
plt.ylabel("Phase Re:90dB (pi radians)")
plt.xlabel('Frequency (Hz)')
plt.legend(['%.0f dB' % level for level in levels], loc='best')
plt.xlim(0, 4000)
plt.ylim(-0.5, 0.75)
plt.show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: tan_carney_Fig11.py

Download Jupyter notebook: tan_carney_Fig11.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Spiking output of the Tan&Carney model

Fig. 1 and 3 (spking output without spiking/refractory period) should
reproduce the output of the AN3_test_tone.m and AN3_test_click.m
scripts, available in the code accompanying the paper Tan & Carney (2003).
This matlab code is available from
http://www.urmc.rochester.edu/labs/Carney-Lab/publications/auditory-models.cfm

Tan, Q., and L. H. Carney.
“A Phenomenological Model for the Responses of Auditory-nerve Fibers.
II. Nonlinear Tuning with a Frequency Glide”.
The Journal of the Acoustical Society of America 114 (2003): 2007.

import numpy as np
import matplotlib.pyplot as plt

from brian2 import *
from brian2hears import (Sound, get_samplerate, set_default_samplerate, tone,
 click, silence, dB, TanCarney, MiddleEar, ZhangSynapse)

set_default_samplerate(50*kHz)
sample_length = 1 / get_samplerate(None)
cf = 1000 * Hz

print('Testing click response')
duration = 25*ms
levels = [40, 60, 80, 100, 120]
a click of two samples
tones = Sound([Sound.sequence([click(sample_length*2, peak=level*dB),
 silence(duration=duration - sample_length)])
 for level in levels])
ihc = TanCarney(MiddleEar(tones), [cf] * len(levels), update_interval=1)
syn = ZhangSynapse(ihc, cf)
mon = StateMonitor(syn, ['s', 'R'], record=True, clock=syn.clock)
spike_mon = SpikeMonitor(syn)
net = Network(syn, mon, spike_mon)
net.run(duration * 1.5)

spiketimes = spike_mon.spike_trains()

for idx, level in enumerate(levels):
 plt.figure(1)
 plt.subplot(len(levels), 1, idx + 1)
 plt.plot(mon.t/ms, mon.s[idx])
 plt.xlim(0, 25)
 plt.xlabel('Time (msec)')
 plt.ylabel('Sp/sec')
 plt.text(15, np.nanmax(mon.s[idx])/2., 'Peak SPL=%s SPL' % str(level*dB));
 ymin, ymax = plt.ylim()
 if idx == 0:
 plt.title('Click responses')

 plt.figure(2)
 plt.subplot(len(levels), 1, idx + 1)
 plt.plot(mon.t/ms, mon.R[idx])
 plt.xlabel('Time (msec)')
 plt.xlabel('Time (msec)')
 plt.text(15, np.nanmax(mon.s[idx])/2., 'Peak SPL=%s SPL' % str(level*dB));
 plt.ylim(ymin, ymax)
 if idx == 0:
 plt.title('Click responses (with spikes and refractoriness)')
 plt.plot(spiketimes[idx]/ms,
 np.ones(len(spiketimes[idx])) * np.nanmax(mon.R[idx]), 'rx')

print('Testing tone response')
duration = 60*ms
levels = [0, 20, 40, 60, 80]
tones = Sound([Sound.sequence([tone(cf, duration).atlevel(level*dB).ramp(when='both',
 duration=10*ms,
 inplace=False),
 silence(duration=duration/2)])
 for level in levels])
ihc = TanCarney(MiddleEar(tones), [cf] * len(levels), update_interval=1)
syn = ZhangSynapse(ihc, cf)
mon = StateMonitor(syn, ['s', 'R'], record=True, clock=syn.clock)
spike_mon = SpikeMonitor(syn)
net = Network(syn, mon, spike_mon)
net.run(duration * 1.5)

spiketimes = spike_mon.spike_trains()

for idx, level in enumerate(levels):
 plt.figure(3)
 plt.subplot(len(levels), 1, idx + 1)
 plt.plot(mon.t/ms, mon.s[idx])
 plt.xlim(0, 120)
 plt.xlabel('Time (msec)')
 plt.ylabel('Sp/sec')
 plt.text(1.25 * duration/ms, np.nanmax(mon.s[idx])/2., '%s SPL' % str(level*dB));
 ymin, ymax = plt.ylim()
 if idx == 0:
 plt.title('CF=%.0f Hz - Response to Tone at CF' % cf)

 plt.figure(4)
 plt.subplot(len(levels), 1, idx + 1)
 plt.plot(mon.t/ms, mon.R[idx])
 plt.xlabel('Time (msec)')
 plt.xlabel('Time (msec)')
 plt.text(1.25 * duration/ms, np.nanmax(mon.R[idx])/2., '%s SPL' % str(level*dB));
 plt.ylim(ymin, ymax)
 if idx == 0:
 plt.title('CF=%.0f Hz - Response to Tone at CF (with spikes and refractoriness)' % cf)
 plt.plot(spiketimes[idx] / ms,
 np.ones(len(spiketimes[idx])) * np.nanmax(mon.R[idx]), 'rx')

plt.show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: tan_carney_simple_test.py

Download Jupyter notebook: tan_carney_simple_test.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

CF-dependence of compressive nonlinearity in the Tan&Carney model

Reproduces Fig. 7 from:

	Tan, Q., and L. H. Carney.

	“A Phenomenological Model for the Responses of Auditory-nerve Fibers.
II. Nonlinear Tuning with a Frequency Glide”.
The Journal of the Acoustical Society of America 114 (2003): 2007.

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d

from brian2 import *
from brian2hears import *
from brian2hears.filtering.tan_carney import TanCarneySignal, MiddleEar

samplerate = 50*kHz
set_default_samplerate(samplerate)
duration = 50*ms

def product(*args):
 # Simple (and inefficient) variant of itertools.product that works for
 # Python 2.5 (directly returns a list instead of yielding one item at a
 # time)
 pools = map(tuple, args)
 result = [[]]
 for pool in pools:
 result = [x+[y] for x in result for y in pool]
 return result

def gen_tone(freq, level):
 '''
 Little helper function to generate a pure tone at frequency `freq` with
 the given `level`. The tone has a duration of 50ms and is ramped with
 two ramps of 2.5ms.
 '''
 freq = float(freq) * Hz
 level = float(level) * dB
 return tone(freq, duration).ramp(when='both',
 duration=2.5*ms,
 inplace=False).atlevel(level)

freqs = [500, 1100, 2000, 4000]
levels = np.arange(-10, 100.1, 5)
cf_level = product(freqs, levels)

steady-state
start = int(10*ms*samplerate)
end = int(45*ms*samplerate)

For Figure 7 we have manually adjusts the gain for different CFs -- otherwise
the RMS values wouldn't be identical for low CFs. Therefore, try to estimate
suitable gain values first using the lowest CF as a reference
ref_tone = gen_tone(freqs[0], levels[0])
F_out_reference = TanCarneySignal(MiddleEar(ref_tone, gain=1), freqs[0],
 update_interval=1).process().flatten()

ref_rms = np.sqrt(np.mean((F_out_reference[start:end] -
 np.mean(F_out_reference[start:end]))**2))

gains = np.linspace(0.1, 1, 50) # for higher CFs we need lower gains
cf_gains = product(freqs[1:], gains)
tones = Sound([gen_tone(freq, levels[0]) for freq, _ in cf_gains])
F_out_test = TanCarneySignal(MiddleEar(tones, gain=np.array([g for _, g in cf_gains])),
 [cf for cf,_ in cf_gains], update_interval=1).process()

reshaped_Fout = F_out_test.T.reshape((len(freqs[1:]), len(gains), -1))
rms = np.sqrt(np.mean((reshaped_Fout[:, :, start:end].T -
 np.mean(reshaped_Fout[:, :, start:end], axis=2).T).T**2,
 axis=2))

get the best gain for each CF using simple linear interpolation
gain_dict = {freqs[0]: 1.} # reference gain
for idx, freq in enumerate(freqs[1:]):
 gain_dict[freq] = interp1d(rms[idx, :], gains)(ref_rms)

now do the real test: tones at different levels for different CFs
tones = Sound([gen_tone(freq, level) for freq, level in cf_level])
F_out = TanCarneySignal(MiddleEar(tones,
 gain=np.array([gain_dict[cf] for cf, _ in cf_level])),
 [cf for cf, _ in cf_level],
 update_interval=1).process()

reshaped_Fout = F_out.T.reshape((len(freqs), len(levels), -1))

rms = np.sqrt(np.mean((reshaped_Fout[:, :, start:end].T -
 np.mean(reshaped_Fout[:, :, start:end], axis=2).T).T**2,
 axis=2))

This should more or less reproduce Fig. 7
plt.plot(levels, rms.T)
plt.legend(['%.0f Hz' % cf for cf in freqs], loc='best')
plt.xlim(-20, 100)
plt.ylim(1e-6, 1)
plt.yscale('log')
plt.xlabel('input signal SPL (dB)')
plt.ylabel('rms of AC component of Fout')
plt.show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: tan_carney_Fig7.py

Download Jupyter notebook: tan_carney_Fig7.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W
 | Z

A

 	
 	
 aiff

 	sound

 	apply() (brian2hears.HRTF method)

 	ApproximateGammatone (class in brian2hears)

 	
 	asymmetric_compensation_coeffs() (in module brian2hears)

 	AsymmetricCompensation (class in brian2hears)

 	atlevel() (brian2hears.Sound method)

 	atmaxlevel() (brian2hears.Sound method)

B

 	
 	BaseSound (class in brian2hears)

 	brownnoise() (brian2hears.Sound static method)

 	(in module brian2hears)

 	
 	Bufferable (class in brian2hears)

 	
 buffering

 	interface

 	Butterworth (class in brian2hears)

C

 	
 	Cascade (class in brian2hears)

 	channel() (brian2hears.Sound method)

 	click() (brian2hears.Sound static method)

 	(in module brian2hears)

 	clicks() (brian2hears.Sound static method)

 	(in module brian2hears)

 	
 cochlea

 	modelling

 	
 	CombinedFilterbank (class in brian2hears)

 	
 computation

 	online

 	
 control path

 	filtering

 	ControlFilterbank (class in brian2hears)

D

 	
 	
 database

 	HRTF

 	dB

 	sound

 	dB_error (class in brian2hears)

 	dB_type (class in brian2hears)

 	DCGC (class in brian2hears)

 	
 	decascade() (brian2hears.LinearFilterbank method)

 	decibel

 	delay_offset (brian2hears.FractionalDelay attribute)

 	DoNothingFilterbank (class in brian2hears)

 	DRNL (class in brian2hears)

 	duration (brian2hears.Filterbank attribute)

 	(brian2hears.Sound attribute)

E

 	
 	erbspace() (in module brian2hears)

 	
 	extended() (brian2hears.Sound method)

F

 	
 	filter

 	filter bank

 	filter_length (brian2hears.FractionalDelay attribute)

 	Filterbank (class in brian2hears)

 	filterbank() (brian2hears.HRTF method)

 	(brian2hears.HRTFSet method)

 	
 	FilterbankGroup (class in brian2hears)

 	
 filtering

 	control path

 	FIRFilterbank (class in brian2hears)

 	FractionalDelay (class in brian2hears)

 	FunctionFilterbank (class in brian2hears)

G

 	
 	Gammatone (class in brian2hears)

 	
 	get_index() (brian2hears.HRTFSet method)

H

 	
 	harmoniccomplex() (brian2hears.Sound static method)

 	(in module brian2hears)

 	HeadlessDatabase (class in brian2hears)

 	HRTF

 	IRCAM

 	database

 	
 	HRTF (class in brian2hears)

 	HRTFDatabase (class in brian2hears)

 	HRTFSet (class in brian2hears)

I

 	
 	IIRFilterbank (class in brian2hears)

 	
 interface

 	buffering

 	Interleave (class in brian2hears)

 	
 	
 IRCAM

 	HRTF

 	IRCAM_LISTEN (class in brian2hears)

 	irno() (in module brian2hears)

 	irns() (in module brian2hears)

J

 	
 	Join (class in brian2hears)

L

 	
 	left (brian2hears.Sound attribute)

 	
 level

 	sound, [1]

 	level (brian2hears.Sound attribute)

 	LinearFilterbank (class in brian2hears)

 	LinearGaborchirp (class in brian2hears)

 	
 	LinearGammachirp (class in brian2hears)

 	load() (brian2hears.Sound static method)

 	loadsound() (in module brian2hears)

 	log_frequency_xaxis_labels() (in module brian2hears)

 	log_frequency_yaxis_labels() (in module brian2hears)

 	LogGammachirp (class in brian2hears)

 	LowPass (class in brian2hears)

M

 	
 	make_coordinates() (in module brian2hears)

 	maxlevel (brian2hears.Sound attribute)

 	
 	MiddleEar (class in brian2hears)

 	
 modelling

 	cochlea

N

 	
 	nchannels (brian2hears.Filterbank attribute)

 	(brian2hears.Sound attribute)

 	
 	nsamples (brian2hears.Sound attribute)

O

 	
 	
 online

 	computation

P

 	
 	pinknoise() (brian2hears.Sound static method)

 	(in module brian2hears)

 	play() (brian2hears.Sound method)

 	(in module brian2hears)

 	
 	powerlawnoise() (brian2hears.Sound static method)

 	(in module brian2hears)

 	process() (brian2hears.Filterbank method)

R

 	
 	ramp() (brian2hears.Sound method)

 	ramped() (brian2hears.Sound method)

 	Repeat (class in brian2hears)

 	
 	repeat() (brian2hears.Sound method)

 	resized() (brian2hears.Sound method)

 	RestructureFilterbank (class in brian2hears)

 	right (brian2hears.Sound attribute)

S

 	
 	samplerate (brian2hears.Filterbank attribute)

 	save() (brian2hears.Sound method)

 	savesound() (in module brian2hears)

 	
 sequence

 	sound

 	sequence() (brian2hears.Sound static method)

 	(in module brian2hears)

 	set_default_samplerate() (in module brian2hears)

 	shifted() (brian2hears.Sound method)

 	silence() (brian2hears.Sound static method)

 	(in module brian2hears)

 	sound

 	aiff

 	dB, [1]

 	decibel

 	level, [1]

 	multiple channels

 	sequence

 	stereo

 	wav

 	
 	Sound (class in brian2hears)

 	source (brian2hears.Filterbank attribute)

 	spectrogram() (brian2hears.Sound method)

 	spectrum() (brian2hears.Sound method)

 	
 stereo

 	sound

 	subset() (brian2hears.HRTFSet method)

 	SumFilterbank (class in brian2hears)

T

 	
 	TanCarney (class in brian2hears)

 	Tile (class in brian2hears)

 	
 	times (brian2hears.Sound attribute)

 	tone() (brian2hears.Sound static method)

 	(in module brian2hears)

V

 	
 	vowel() (brian2hears.Sound static method)

W

 	
 	
 wav

 	sound

 	
 	whitenoise() (brian2hears.Sound static method)

 	(in module brian2hears)

Z

 	
 	ZhangSynapse (class in brian2hears)

 	
 	ZhangSynapseRate (class in brian2hears)

 	ZhangSynapseSpikes (class in brian2hears)

 All modules for which code is available

	brian2hears.bufferable

	brian2hears.db

	brian2hears.erb

	brian2hears.filtering.dcgc

	brian2hears.filtering.drnl

	brian2hears.filtering.filterbank

	brian2hears.filtering.filterbankgroup

	brian2hears.filtering.filterbanklibrary

	brian2hears.filtering.firfilterbank

	brian2hears.filtering.fractionaldelay

	brian2hears.filtering.linearfilterbank

	brian2hears.filtering.tan_carney

	brian2hears.hrtf.hrtf

	brian2hears.hrtf.ircam

	brian2hears.hrtf.itd

	brian2hears.plotting

	brian2hears.prefs

	brian2hears.sounds

 Source code for brian2hears.bufferable

'''
The Bufferable class serves as a base for all the other brian2hears classes
'''
import numpy as np

[docs]class Bufferable(object):
 '''
 Base class for brian2hears classes

 Defines a buffering interface of two methods:

 ``buffer_init()``
 Initialise the buffer, should set the time pointer to zero and do
 any other initialisation that the object needs.

 ``buffer_fetch(start, end)``
 Fetch the next samples ``start:end`` from the buffer. Value returned
 should be an array of shape ``(end-start, nchannels)``. Can throw an
 ``IndexError`` exception if it is outside the possible range.

 In addition, bufferable objects should define attributes:

 ``nchannels``
 The number of channels in the buffer.

 ``samplerate``
 The sample rate in Hz.

 By default, the class will define a default buffering mechanism which can
 easily be extended. To extend the default buffering mechanism, simply
 implement the method:

 ``buffer_fetch_next(samples)``
 Returns the next ``samples`` from the buffer.

 The default methods for ``buffer_init()`` and ``buffer_fetch()`` will
 define a buffer cache which will get larger if it needs to to accommodate
 a ``buffer_fetch(start, end)`` where ``end-start`` is larger than the
 current cache. If the filterbank has a ``minimum_buffer_size`` attribute,
 the internal cache will always have at least this size, and the
 ``buffer_fetch_next(samples)`` method will always get called with
 ``samples>=minimum_buffer_size``. This can be useful to ensure that the
 buffering is done efficiently internally, even if the user request
 buffered chunks that are too small. If the filterbank has a
 ``maximum_buffer_size`` attribute then ``buffer_fetch_next(samples)`` will
 always be called with ``samples<=maximum_buffer_size`` - this can be useful
 for either memory consumption reasons or for implementing time varying
 filters that need to update on a shorter time window than the overall
 buffer size.

 The following attributes will automatically be maintained:

 ``self.cached_buffer_start``, ``self.cached_buffer_end``
 The start and end of the cached segment of the buffer

 ``self.cached_buffer_output``
 An array of shape ``((cached_buffer_end-cached_buffer_start, nchannels)``
 with the current cached segment of the buffer. Note that this array can
 change size.
 '''
 def buffer_fetch(self, start, end):
 if not hasattr(self, 'cached_buffer_start'):
 self.buffer_init()
 # optimisations for the most typical cases, which are when start:end is
 # the current cached segment, or when start:end is the next cached
 # segment of the same size as the current one
 if start==self.cached_buffer_start and end==self.cached_buffer_end:
 return self.cached_buffer_output
 if start==self.cached_buffer_end and end-start==self.cached_buffer_output.shape[0]:
 self.cached_buffer_output = self._buffer_fetch_next(end-start)
 self.cached_buffer_start = start
 self.cached_buffer_end = end
 return self.cached_buffer_output
 # handle bad inputs
 if end<start:
 raise IndexError('Buffer end should be larger than start.')
 if start<self.cached_buffer_start:
 raise IndexError('Attempted to fetch output that has disappeared from the buffer.')
 # If the requested segment of the buffer is entirely within the cache,
 # just return it.
 if end<=self.cached_buffer_end:
 bstart = start-self.cached_buffer_start
 bend = end-self.cached_buffer_start
 return self.cached_buffer_output[bstart:bend, :]
 # Otherwise we need to fetch some new samples.
 # in case of minimum_buffer_size, we need to remember what the
 # requested end point was, because with a minimum buffer size we need
 # to extend the end point
 req_end = end
 samples = end-self.cached_buffer_end
 if hasattr(self, 'minimum_buffer_size'):
 samples = max(samples, self.minimum_buffer_size)
 end = self.cached_buffer_end+samples
 newsegment = self._buffer_fetch_next(samples)
 # otherwise we have an overlap situation - I guess this won't really
 # happen very often but it has to be handled correctly in case.
 new_end = end
 # if end-start is longer than the size of the current cached buffer, we
 # will have to increase the size of the cache
 new_start = min(new_end-self.cached_buffer_output.shape[0], start)
 new_size = new_end-new_start
 new_output = np.empty((new_size, self.nchannels))
 if samples!=new_size:
 new_output[:new_size-samples, :] = self.cached_buffer_output[samples-new_size:, :]
 new_output[new_size-samples:, :] = newsegment
 self.cached_buffer_output = new_output
 self.cached_buffer_start = new_start
 self.cached_buffer_end = new_end
 # return only those values up to the requested end point
 return new_output[start-self.cached_buffer_start:req_end-self.cached_buffer_start, :]

 def _buffer_fetch_next(self, samples):
 # This method checks if there is a maximum buffer size, and if so
 # splits the buffer_fetch_next into multiple pieces of at most this size
 if not hasattr(self, 'maximum_buffer_size'):
 return self.buffer_fetch_next(samples)
 bufsize = self.maximum_buffer_size
 endpoints = np.hstack((np.arange(0, samples, bufsize), samples))
 sizes = np.diff(endpoints)
 return np.vstack(tuple(self.buffer_fetch_next(size) for size in sizes))

 def buffer_init(self):
 self.cached_buffer_output = np.zeros((0, self.nchannels))
 self.cached_buffer_start = 0
 self.cached_buffer_end = 0

 def buffer_fetch_next(self, samples):
 raise NotImplementedError

 nchannels = NotImplemented
 samplerate = NotImplemented

 Source code for brian2hears.db

import numpy as np

__all__ = ['dB', 'dB_type', 'dB_error', 'gain']

[docs]class dB_error(ValueError):
 '''
 Error raised when values in dB are used inconsistently with other units.
 '''
 pass

[docs]class dB_type(np.float64):
 '''
 The type of values in dB.

 dB values are assumed to be RMS dB SPL assuming that the sound source is
 measured in Pascals.
 '''
 def __str__(self):
 return str(float(self))+'*dB'
 def __repr__(self):
 return repr(float(self))+'*dB'
 def __mul__(self, other):
 if isinstance(other, dB_type):
 raise dB_error('Cannot multiply dB by dB')
 return dB_type(float(self)*other)
 __rmul__ = __mul__
 def __div__(self, other):
 if isinstance(other, dB_type):
 raise dB_error('Cannot divide dB by dB')
 return dB_type(float(self)/other)
 __truediv__ = __div__
 def __rdiv__(self, other):
 if isinstance(other, dB_type):
 raise dB_error('Cannot divide dB by dB')
 return dB_type(other/float(self))
 __rtruediv__ = __rdiv__
 def __add__(self, other):
 if not isinstance(other, dB_type):
 raise dB_error('Cannot add a dB object to a non-dB object')
 return dB_type(float(self)+float(other))
 __radd__ = __add__
 def __sub__(self, other):
 if not isinstance(other, dB_type):
 raise dB_error('Cannot subtract a dB object from a non-dB object')
 return dB_type(float(self)-float(other))
 def __rsub__(self, other):
 if not isinstance(other, dB_type):
 raise dB_error('Cannot subtract a dB object from a non-dB object')
 return dB_type(float(other)-float(self))
 def __neg__(self):
 return dB_type(-float(self))
 def __pos__(self):
 return self
 def __abs__(self):
 return dB_type(abs(float(self)))
 def __pow__(self, other):
 raise dB_error('Cannot take powers with dB')
 __rpow__ = __pow__
 def __lt__(self, other):
 if not isinstance(other, dB_type):
 raise dB_error('Can only compare with another dB')
 return float(self)<float(other)
 def __le__(self, other):
 if not isinstance(other, dB_type):
 raise dB_error('Can only compare with another dB')
 return float(self)<=float(other)
 def __gt__(self, other):
 if not isinstance(other, dB_type):
 raise dB_error('Can only compare with another dB')
 return float(self)>float(other)
 def __ge__(self, other):
 if not isinstance(other, dB_type):
 raise dB_error('Can only compare with another dB')
 return float(self)>=float(other)
 def __eq__(self, other):
 if not isinstance(other, dB_type):
 raise dB_error('Can only compare with another dB')
 return float(self)==float(other)
 def __ne__(self, other):
 if not isinstance(other, dB_type):
 raise dB_error('Can only compare with another dB')
 return float(self)!=float(other)
 def __reduce__(self):
 return (dB_type, (float(self),))
 def gain(self):
 return 10**(float(self)/20.0)

dB = dB_type(1.0)

def gain(level):
 '''
 Returns the gain factor associated to a level in dB.

 The formula is:

 gain = 10**(level/20.0)
 '''
 if not isinstance(level, dB_type):
 raise dB_error('Level must be in dB')
 return level.gain()

 Source code for brian2hears.erb

'''
Utility functions adapted from MAP
'''
import numpy as np

from brian2 import Hz, kHz, check_units

__all__ = ['erbspace']

[docs]@check_units(low=Hz, high=Hz)
def erbspace(low, high, N, earQ=9.26449, minBW=24.7, order=1):
 '''
 Returns the centre frequencies on an ERB scale.

 ``low``, ``high``
 Lower and upper frequencies
 ``N``
 Number of channels
 ``earQ=9.26449``, ``minBW=24.7``, ``order=1``
 Default Glasberg and Moore parameters.
 '''
 low = float(low)
 high = float(high)
 cf = -(earQ * minBW) + np.exp((np.arange(N)) * (-np.log(high + earQ * minBW) +
 np.log(low + earQ * minBW)) / (N-1)) * (high + earQ * minBW)
 cf = cf[::-1]
 return cf*Hz

if __name__ == '__main__':
 import matplotlib.pyplot as plt
 cf = erbspace(20 * Hz, 20 * kHz, 3000)
 print(np.amin(cf), np.amax(cf))
 print(np.diff(cf)[-5:])
 plt.plot(cf)
 plt.show()

 Source code for brian2hears.plotting

import numpy as np
import matplotlib.pyplot as plt

from brian2 import Hz, kHz

from .erb import *

__all__ = ['log_frequency_xaxis_labels', 'log_frequency_yaxis_labels']

[docs]def log_frequency_xaxis_labels(ax=None, freqs=None):
 '''
 Sets tick positions for log-scale frequency x-axis at sensible locations.

 Also uses scalar representation rather than exponential (i.e. 100 rather
 than 10^2).

 ``ax=None``
 The axis to set, or uses ``gca()`` if ``None``.
 ``freqs=None``
 Override the default frequency locations with your preferred tick
 locations.

 See also: :func:`log_frequency_yaxis_labels`.

 Note: with log scaled axes, it can be useful to call ``axis('tight')``
 before setting the ticks.
 '''
 if ax is None:
 ax = plt.gca()
 return log_frequency_axis_labels(ax.xaxis, freqs=freqs)

[docs]def log_frequency_yaxis_labels(ax=None, freqs=None):
 '''
 Sets tick positions for log-scale frequency x-axis at sensible locations.

 Also uses scalar representation rather than exponential (i.e. 100 rather
 than 10^2).

 ``ax=None``
 The axis to set, or uses ``gca()`` if ``None``.
 ``freqs=None``
 Override the default frequency locations with your preferred tick
 locations.

 See also: :func:`log_frequency_yaxis_labels`.

 Note: with log scaled axes, it can be useful to call ``axis('tight')``
 before setting the ticks.
 '''
 if ax is None:
 ax = plt.gca()
 return log_frequency_axis_labels(ax.yaxis, freqs=freqs)

def log_frequency_axis_labels(ax, freqs=None):
 if freqs is not None:
 ax.set_major_locator(plt.FixedLocator(freqs))
 ax.set_major_formatter(plt.ScalarFormatter())
 ax.set_minor_locator(plt.NullLocator())
 return
 xmin, xmax = ax.get_view_interval()
 # we use the first of these ranges that the data fits within
 allowed_ranges = [[1, 2, 4, 8, 16, 32, 64],
 [50, 75, 100, 150, 200, 300, 400],
 [10, 20, 40, 80, 160, 320],
 [1, 2, 4, 8, 16, 32, 64, 100, 200, 400, 800],
 [125, 250, 500, 1000, 2000, 4000, 8000, 16000],
 [100, 250, 500, 1000, 2500, 5000, 10000, 25000, 50000],
]
 found = False
 for R in allowed_ranges:
 if xmin>=np.amin(R)*0.9999 and xmax<=np.amax(R)*1.0001:
 found = True
 break
 if not found:
 ax.set_major_locator(plt.LogLocator(base=2))
 else:
 ax.set_major_locator(plt.FixedLocator(R))
 ax.set_major_formatter(plt.ScalarFormatter())
 ax.set_minor_locator(plt.NullLocator())

if __name__=='__main__':
 for i, cfs in enumerate([erbspace(150*Hz, 5*kHz, 100),
 erbspace(2*Hz, 64*Hz, 100),
 erbspace(100*Hz, 10*kHz, 100),
 erbspace(100*Hz, 400*Hz, 100),
]):
 plt.subplot(2, 2, i+1)
 #cfs = erbspace(150*Hz, 5*kHz, 100)
 plt.semilogx(cfs, 1-((np.arange(len(cfs))-len(cfs)/2.0)/(len(cfs)/2.0))**2)
 plt.axis('tight')
 log_frequency_xaxis_labels()
 plt.show()

 Source code for brian2hears.prefs

from brian2 import kHz

__all__ = ['get_samplerate', 'set_default_samplerate']

default_samplerate = 44.1*kHz

def get_samplerate(samplerate):
 if samplerate is None:
 return default_samplerate
 else:
 return samplerate

[docs]def set_default_samplerate(samplerate):
 '''
 Sets the default samplerate for Brian hears objects, by default 44.1 kHz.
 '''
 global default_samplerate
 default_samplerate = samplerate

 Source code for brian2hears.sounds

from builtins import range
import array as pyarray
import time

import numpy as np
from numpy.fft import fft, ifft, fftfreq
from numpy.random import randn
import matplotlib.pyplot as plt
from scipy.signal import fftconvolve, lfilter
from scipy.special import factorial

try:
 from samplerate import resample
 have_resample = True
except (ImportError):
 have_resample = False

from brian2 import (Hz, ms, second, check_units,
 have_same_dimensions, get_unit, DimensionMismatchError)

from .bufferable import Bufferable
from .prefs import get_samplerate
from .db import dB, dB_type, dB_error

pygame_loaded = False

__all__ = ['BaseSound', 'Sound',
 'pinknoise','brownnoise','powerlawnoise',
 'whitenoise', 'irns', 'irno',
 'tone', 'click', 'clicks', 'silence', 'sequence', 'harmoniccomplex',
 'loadsound', 'savesound', 'play', 'vowel'
]

_mixer_status = [-1,-1]

[docs]class BaseSound(Bufferable):
 '''
 Base class for Sound and OnlineSound
 '''
 pass

[docs]class Sound(BaseSound, np.ndarray):
 '''
 Class for working with sounds, including loading/saving, manipulating and playing.

 For an overview, see :ref:`sounds_overview`.

 Initialisation

 The following arguments are used to initialise a sound object

 ``data``
 Can be a filename, an array, a function or a sequence (list or tuple).
 If its a filename, the sound file (WAV or AIFF) will be loaded. If its
 an array, it should have shape ``(nsamples, nchannels)``. If its a
 function, it should be a function f(t). If its a sequence, the items
 in the sequence can be filenames, functions, arrays or Sound objects.
 The output will be a multi-channel sound with channels the corresponding
 sound for each element of the sequence.
 ``samplerate=None``
 The samplerate, if necessary, will use the default (for an array or
 function) or the samplerate of the data (for a filename).
 ``duration=None``
 The duration of the sound, if initialising with a function.

 Loading, saving and playing

 .. automethod:: load
 .. automethod:: save
 .. automethod:: play

 Properties

 .. autoattribute:: duration
 .. autoattribute:: nsamples
 .. autoattribute:: nchannels
 .. autoattribute:: times
 .. autoattribute:: left
 .. autoattribute:: right
 .. automethod:: channel

 Generating sounds

 All sound generating methods can be used with durations arguments in samples (int) or units (e.g. 500*ms). One can also set the number of channels by setting the keyword argument nchannels to the desired value. Notice that for noise the channels will be generated independantly.

 .. automethod:: tone
 .. automethod:: whitenoise
 .. automethod:: powerlawnoise
 .. automethod:: brownnoise
 .. automethod:: pinknoise
 .. automethod:: silence
 .. automethod:: click
 .. automethod:: clicks
 .. automethod:: harmoniccomplex
 .. automethod:: vowel

 Timing and sequencing

 .. automethod:: sequence(*sounds, samplerate=None)
 .. automethod:: repeat
 .. automethod:: extended
 .. automethod:: shifted
 .. automethod:: resized

 Slicing

 One can slice sound objects in various ways, for example ``sound[100*ms:200*ms]``
 returns the part of the sound between 100 ms and 200 ms (not including the
 right hand end point). If the sound is less than 200 ms long it will be
 zero padded. You can also set values using slicing, e.g.
 ``sound[:50*ms] = 0`` will silence the first 50 ms of the sound. The syntax
 is the same as usual for Python slicing. In addition, you can select a
 subset of the channels by doing, for example, ``sound[:, -5:]`` would be
 the last 5 channels. For time indices, either times or samples can be given,
 e.g. ``sound[:100]`` gives the first 100 samples. In addition, steps can
 be used for example to reverse a sound as ``sound[::-1]``.

 Note that slicing with units of time rather than samples will only work in
 Python 3. In Python 2, you can get the same effect by writing, for example,
 ``sound[slice(0*ms, 10*ms)]``. This is a change from the original version of
 ``brian.hears``.

 Arithmetic operations

 Standard arithemetical operations and numpy functions work as you would
 expect with sounds, e.g. ``sound1+sound2``, ``3*sound`` or ``abs(sound)``.

 Level

 .. autoattribute:: level
 .. automethod:: atlevel
 .. autoattribute:: maxlevel
 .. automethod:: atmaxlevel

 Ramping

 .. automethod:: ramp
 .. automethod:: ramped

 Plotting

 .. automethod:: spectrogram
 .. automethod:: spectrum
 '''
 duration = property(fget=lambda self:len(self) / self.samplerate,
 doc='The length of the sound in seconds.')
 nsamples = property(fget=lambda self:len(self),
 doc='The number of samples in the sound.')
 times = property(fget=lambda self:np.arange(len(self), dtype=float) / self.samplerate,
 doc='An array of times (in seconds) corresponding to each sample.')
 nchannels = property(fget=lambda self:self.shape[1],
 doc='The number of channels in the sound.')
 left = property(fget=lambda self:self.channel(0),
 doc='The left channel for a stereo sound.')
 right = property(fget=lambda self:self.channel(1),
 doc='The right channel for a stereo sound.')

 @check_units(samplerate=Hz, duration=second)
 def __new__(cls, data, samplerate=None, duration=None):
 if isinstance(data, np.ndarray):
 samplerate = get_samplerate(samplerate)
if samplerate is None:
raise ValueError('Must specify samplerate to initialise Sound with array.')
 if duration is not None:
 raise ValueError('Cannot specify duration when initialising Sound with array.')
 x = np.array(data, dtype=float)
 elif isinstance(data, str):
 if duration is not None:
 raise ValueError('Cannot specify duration when initialising Sound from file.')
 if samplerate is not None:
 raise ValueError('Cannot specify samplerate when initialising Sound from a file.')
 x = Sound.load(data)
 samplerate = x.samplerate
 elif callable(data):
 samplerate = get_samplerate(samplerate)
if samplerate is None:
raise ValueError('Must specify samplerate to initialise Sound with function.')
 if duration is None:
 raise ValueError('Must specify duration to initialise Sound with function.')
 L = int(np.rint(duration * samplerate))
 t = np.arange(L, dtype=float) / samplerate
 x = data(t)
 elif isinstance(data, (list, tuple)):
 kwds = {}
 if samplerate is not None:
 kwds['samplerate'] = samplerate
 if duration is not None:
 kwds['duration'] = duration
 channels = tuple(Sound(c, **kwds) for c in data)
 x = np.hstack(channels)
 samplerate = channels[0].samplerate
 else:
 raise TypeError('Cannot initialise Sound with data of class ' + str(data.__class__))
 if len(x.shape)==1:
 x.shape = (len(x), 1)
 x = x.view(cls)
 x.samplerate = samplerate
 x.buffer_init()
 return x

 def __array_wrap__(self, obj, context=None):
 handled = False
 x = np.ndarray.__array_wrap__(self, obj, context)
 if not hasattr(x, 'samplerate') and hasattr(self, 'samplerate'):
 x.samplerate = self.samplerate
 if context is not None:
 ufunc = context[0]
 args = context[1]
 return x

 def __array_finalize__(self,obj):
 if obj is None: return
 self.samplerate = getattr(obj, 'samplerate', None)

 def buffer_init(self):
 pass

 def buffer_fetch(self, start, end):
 if start<0:
 raise IndexError('Can only use positive indices in buffer.')
 samples = end-start
 X = np.asarray(self)[start:end, :]
 if X.shape[0]<samples:
 X = np.vstack((X, np.zeros((samples-X.shape[0], X.shape[1]))))
 return X

[docs] def channel(self, n):
 '''
 Returns the nth channel of the sound.
 '''
 return Sound(self[:, n], self.samplerate)

 def __add__(self, other):
 if isinstance(other, Sound):
 if int(other.samplerate) > int(self.samplerate):
 self = self.resample(other.samplerate)
 elif int(other.samplerate) < int(self.samplerate):
 other = other.resample(self.samplerate)

 if len(self) > len(other):
 other = other.resized(len(self))
 elif len(self) < len(other):
 self = self.resized(len(other))

 return Sound(np.ndarray.__add__(self, other), samplerate=self.samplerate)
 else:
 x = np.ndarray.__add__(self, other)
 return Sound(x, self.samplerate)
 __radd__ = __add__

 def __getitem__(self, key):
 channel = slice(None)
 if isinstance(key, tuple):
 channel = key[1]
 key = key[0]

 if isinstance(key, int):
 return np.ndarray.__getitem__(self, key)
 if isinstance(key, float):
 return np.ndarray.__getitem__(self, round(key*self.samplerate))

 sliceattr = [v for v in [key.start, key.stop] if v is not None]
 slicedims = np.array([have_same_dimensions(flag, second) for flag in sliceattr])
 attrisint = np.array([isinstance(v, int) for v in sliceattr])
 s = sum(attrisint)
 if s!=0 and s!=len(sliceattr):
 raise ValueError('Slice attributes must be all ints or all times')
 if s==len(sliceattr): # all ints
 start = key.start or 0
 stop = key.stop or self.shape[0]
 step = key.step or 1
 if start>=0 and stop<=self.shape[0]:
 return Sound(np.ndarray.__getitem__(self, (key, channel)),
 self.samplerate)
 else:
 startpad = max(-start, 0)
 endpad = max(stop-self.shape[0], 0)
 startmid = max(start, 0)
 endmid = min(stop, self.shape[0])
 atstart = np.zeros((startpad, self.shape[1]))
 atend = np.zeros((endpad, self.shape[1]))
 return Sound(np.vstack((atstart,
 np.asarray(self)[startmid:endmid:step],
 atend)), self.samplerate)
 if not slicedims.all():
 raise DimensionMismatchError('Slicing',
 *[get_unit(d) for d in sliceattr])

 start = key.start or 0*ms
 stop = key.stop or self.duration
 step = key.step or 1
 if int(step)!=step:
 #resampling
 raise NotImplementedError
 start = int(np.rint(start*self.samplerate))
 stop = int(np.rint(stop*self.samplerate))
 return self.__getitem__((slice(start,stop,step),channel))

 def __setitem__(self,key,value):
 channel=slice(None)
 if isinstance(key,tuple):
 channel=key[1]
 key=key[0]

 if isinstance(key,int):
 return np.ndarray.__setitem__(self,(key,channel),value)
 if isinstance(key,float):
 return np.ndarray.__setitem__(self,(int(np.rint(key*self.samplerate)),channel),value)

 sliceattr = [v for v in [key.start, key.step, key.stop] if v is not None]
 slicedims = np.array([have_same_dimensions(flag, second) for flag in sliceattr])
 attrisint = np.array([isinstance(v, int) for v in sliceattr])
 s = sum(attrisint)
 if s!=0 and s!=len(sliceattr):
 raise ValueError('Slice attributes must be all ints or all times')
 if s==len(sliceattr): # all ints
 # If value is a mono sound its shape will be (N, 1) but the numpy
 # setitem will have shape (N,) so in this case it's a shape mismatch
 # so we squeeze the array to make sure this doesn't happen.
 if isinstance(value,Sound) and channel!=slice(None):
 value=value.squeeze()
 return np.asarray(self).__setitem__((key,channel),value) # returns None

 if not slicedims.all():
 raise DimensionMismatchError('Slicing',
 *[get_unit(d) for d in sliceattr])

 if key.__getattribute__('step') is not None:
 # resampling?
 raise NotImplementedError

 start = key.start
 stop = key.stop or self.duration
 if (start is not None and start<0*ms) or stop > self.duration:
 raise IndexError('Slice bigger than Sound object')
 if start is not None: start = int(np.rint(start*self.samplerate))
 stop = int(np.rint(stop*self.samplerate))
 return self.__setitem__((slice(start,stop),channel),value)

[docs] def extended(self, duration):
 '''
 Returns the Sound with length extended by the given duration, which
 can be the number of samples or a length of time in seconds.
 '''
 duration = get_duration(duration, self.samplerate)
 return self[:self.nsamples+duration]

[docs] def resized(self, L):
 '''
 Returns the Sound with length extended (or contracted) to have L samples.
 '''
 if L == len(self):
 return self
 elif L < len(self):
 return Sound(self[:L, :], samplerate=self.samplerate)
 else:
 padding = np.zeros((L - len(self), self.nchannels))
 return Sound(np.concatenate((self, padding)), samplerate=self.samplerate)

[docs] def shifted(self, duration, fractional=False, filter_length=2048):
 '''
 Returns the sound delayed by duration, which can be the number of
 samples or a length of time in seconds. Normally, only integer
 numbers of samples will be used, but if ``fractional=True`` then
 the filtering method from
 `http://www.labbookpages.co.uk/audio/beamforming/fractionalDelay.html <http://www.labbookpages.co.uk/audio/beamforming/fractionalDelay.html>`__
 will be used (introducing some small numerical errors). With this
 method, you can specify the ``filter_length``, larger values are
 slower but more accurate, especially at higher frequencies. The large
 default value of 2048 samples provides good accuracy for sounds with
 frequencies above 20 Hz, but not for lower frequency sounds. If you are
 restricted to high frequency sounds, a smaller value will be more
 efficient. Note that if ``fractional=True`` then
 ``duration`` is assumed to be a time not a number of samples.
 '''
 if not fractional:
 if not isinstance(duration, int):
 duration = int(np.rint(duration*self.samplerate))
 if duration>=0:
 y = np.vstack((np.zeros((duration, self.nchannels)), self))
 return Sound(y, samplerate=self.samplerate)
 else:
 return self[-duration:, :]
 else:
 if self.nchannels>1:
 sounds = [self.channel(i).shifted(duration, fractional=True, filter_length=filter_length) for i in range(self.nchannels)]
 return Sound(np.hstack(sounds), samplerate=self.samplerate)
 # Adapted from
 # http://www.labbookpages.co.uk/audio/beamforming/fractionalDelay.html
 delay = duration*self.samplerate
 if delay>=0:
 idelay = int(delay)
 elif delay<0:
 idelay = -int(-delay)
 delay -= idelay
 centre_tap = filter_length // 2
 t = np.arange(filter_length)
 x = t-delay
 if abs(round(delay)-delay)<1e-10:
 tap_weight = np.array(x==centre_tap, dtype=float)
 else:
 sinc = np.sin(np.pi*(x-centre_tap))/(np.pi*(x-centre_tap))
 window = 0.54-0.46*np.cos(2.0*np.pi*(x+0.5)/filter_length) # Hamming window
 tap_weight = window*sinc
 if filter_length<256:
 y = np.convolve(tap_weight, self.flatten())
 else:
 y = fftconvolve(tap_weight, self.flatten())
 y = y[filter_length/2:-filter_length/2]
 sound = Sound(y, self.samplerate)
 sound = sound.shifted(idelay)
 return sound

[docs] def repeat(self, n):
 '''
 Repeats the sound n times
 '''
 x = np.vstack((self,)*n)
 return Sound(x, samplerate=self.samplerate)

 @check_units(samplerate=Hz)
 def resample(self, samplerate, resample_type='sinc_best'):
 '''
 Returns a resampled version of the sound.
 '''
 if not have_resample:
 raise ImportError('Need samplerate package for resampling')
 y = np.array(resample(self, float(samplerate / self.samplerate), resample_type),
 dtype=np.float64)
 return Sound(y, samplerate=samplerate)

 def _init_mixer(self):
 global _mixer_status
 if _mixer_status==[-1,-1] or _mixer_status[0]!= self.nchannels or _mixer_status[1] != self.samplerate:
 pygame.mixer.quit()
 pygame.mixer.init(int(self.samplerate), -16, self.nchannels)
 _mixer_status=[self.nchannels,self.samplerate]

[docs] def play(self, normalise=False, sleep=False):
 '''
 Plays the sound (normalised to avoid clipping if required). If
 sleep=True then the function will wait until the sound has finished
 playing before returning.
 '''
 global pygame, pygame_loaded
 if not pygame_loaded:
 try:
 import pygame
 except ImportError:
 raise ImportError("Playing sounds requires the pygame module to be installed")
 pygame_loaded = True
 if self.nchannels>2:
 raise ValueError("Can only play sounds with 1 or 2 channels.")
 self._init_mixer()
 if normalise:
 a = np.amax(np.abs(self))
 else:
 a = 1
 x = np.array((2 ** 15 - 1) * np.clip(self / a, -1, 1), dtype=np.int16)
 if self.nchannels==1:
 x.shape = x.size
 # Make sure pygame receives an array in C-order
 x = pygame.sndarray.make_sound(np.ascontiguousarray(x))
 x.play()
 if sleep:
 time.sleep(float(self.duration))

[docs] def spectrogram(self, low=None, high=None, log_power=True, other = None, **kwds):
 '''
 Plots a spectrogram of the sound

 Arguments:

 ``low=None``, ``high=None``
 If these are left unspecified, it shows the full spectrogram,
 otherwise it shows only between ``low`` and ``high`` in Hz.
 ``log_power=True``
 If True the colour represents the log of the power.
 ``**kwds``
 Are passed to Pylab's ``specgram`` command.

 Returns the values returned by pylab's ``specgram``, namely
 ``(pxx, freqs, bins, im)`` where ``pxx`` is a 2D array of powers,
 ``freqs`` is the corresponding frequencies, ``bins`` are the time bins,
 and ``im`` is the image axis.
 '''
 if self.nchannels>1:
 raise ValueError('Can only plot spectrograms for mono sounds.')
 if other is not None:
 x = self.flatten()-other.flatten()
 else:
 x = self.flatten()
 pxx, freqs, bins, im = plt.specgram(x, Fs=float(self.samplerate), **kwds)
 if low is not None or high is not None:
 restricted = True
 if low is None:
 low = 0*Hz
 if high is None:
 high = np.amax(freqs)*Hz
 I = np.logical_and(low <= freqs, freqs <= high)
 I2 = np.where(I)[0]
 I2 = [max(min(I2) - 1, 0), min(max(I2) + 1, len(freqs) - 1)]
 Z = pxx[I2[0]:I2[-1], :]
 else:
 restricted = False
 Z = pxx
 if log_power:
 Z[Z < 1e-20] = 1e-20 # no zeros because we take logs
 Z = 10 * np.log10(Z)
 Z = np.flipud(Z)
 if restricted:
 plt.imshow(Z, extent=(0, np.amax(bins), freqs[I2[0]], freqs[I2[-1]]),
 origin='upper', aspect='auto')
 else:
 plt.imshow(Z, extent=(0, np.amax(bins), freqs[0], freqs[-1]),
 origin='upper', aspect='auto')
 plt.xlabel('Time (s)')
 plt.ylabel('Frequency (Hz)')
 return (pxx, freqs*Hz, bins*second, im)

[docs] @check_units(low=Hz, high=Hz)
 def spectrum(self, low=None, high=None, log_power=True, display=False):
 '''
 Returns the spectrum of the sound and optionally plots it.

 Arguments:

 ``low``, ``high``
 If these are left unspecified, it shows the full spectrum,
 otherwise it shows only between ``low`` and ``high`` in Hz.
 ``log_power=True``
 If True it returns the log of the power.
 ``display=False``
 Whether to plot the output.

 Returns ``(Z, freqs, phase)``
 where ``Z`` is a 1D array of powers, ``freqs`` is the corresponding
 frequencies, ``phase`` is the unwrapped phase of spectrum.
 '''
 if self.nchannels>1:
 raise ValueError('Can only plot spectrum for mono sounds.')

 # Flatten array, fft operates on the last axis by default
 sp = fft(np.array(self).flatten())
 freqs = np.array(range(len(sp)), dtype=np.float64) / len(sp) * np.float64(self.samplerate)
 pxx = abs(sp) ** 2
 phase = np.unwrap(np.mod(np.angle(sp), 2 * np.pi))
 if low is not None or high is not None:
 restricted = True
 if low is None:
 low = 0*Hz
 if high is None:
 high = np.amax(freqs)*Hz
 I = np.logical_and(low <= freqs, freqs <= high)
 I2 = np.where(I)[0]
 Z = pxx[I2]
 freqs = freqs[I2]
 phase = phase[I2]
 else:
 restricted = False
 Z = pxx
 if log_power:
 Z[Z < 1e-20] = 1e-20 # no zeros because we take logs
 Z = 10 * np.log10(Z)
 if display:
 Zp = Z[freqs>0]
 phasep = phase[freqs>0]
 freqsp = freqs[freqs>0]
 plt.subplot(211)
 plt.semilogx(freqsp, Zp)
 plt.grid()
 plt.xlim((freqsp[0], freqsp[-1]))
 plt.xlabel('Frequency (Hz)')
 plt.ylabel('Power (dB/Hz)') if log_power else plt.ylabel('Power')
 plt.subplot(212)
 plt.semilogx(freqsp, phasep)
 plt.grid()
 plt.xlim((freqsp[0], freqsp[-1]))
 plt.xlabel('Frequency (Hz)')
 plt.ylabel('Phase (rad)')
 plt.tight_layout()
 return (Z, freqs*Hz, phase)

 def get_level(self):
 '''
 Returns level in dB SPL (RMS) assuming array is in Pascals.
 In the case of multi-channel sounds, returns an array of levels
 for each channel, otherwise returns a float.
 '''
 if self.nchannels==1:
 rms_value = np.sqrt(np.mean((np.asarray(self)-np.mean(np.asarray(self)))**2))
 rms_dB = 20.0*np.log10(rms_value/2e-5)
 return rms_dB*dB
 else:
 return np.array(tuple(self.channel(i).get_level() for i in range(self.nchannels)))

 def set_level(self, level):
 '''
 Sets level in dB SPL (RMS) assuming array is in Pascals. ``level``
 should be a value in dB, or a tuple of levels, one for each channel.
 '''
 rms_dB = self.get_level()
 if self.nchannels>1:
 level = np.array(level)
 if level.size==1:
 level = level.repeat(self.nchannels)
 level = np.reshape(level, (1, self.nchannels))
 rms_dB = np.reshape(rms_dB, (1, self.nchannels))
 else:
 if not isinstance(level, dB_type):
 raise dB_error('Must specify level in dB')
 rms_dB = float(rms_dB)
 level = float(level)
 gain = 10**((level-rms_dB)/20.)
 self *= gain

 level = property(fget=get_level, fset=set_level, doc='''
 Can be used to get or set the level of a sound, which should be in dB.
 For single channel sounds a value in dB is used, for multiple channel
 sounds a value in dB can be used for setting the level (all channels
 will be set to the same level), or a list/tuple/array of levels. It
 is assumed that the unit of the sound is Pascals.
 ''')

[docs] def atlevel(self, level):
 '''
 Returns the sound at the given level in dB SPL (RMS) assuming array is
 in Pascals. ``level`` should be a value in dB, or a tuple of levels,
 one for each channel.
 '''
 newsound = self.copy()
 newsound.level = level
 return newsound

 def get_maxlevel(self):
 return np.amax(self.level)*dB

 def set_maxlevel(self, level):
 self.level += level-self.maxlevel

 maxlevel = property(fget=get_maxlevel, fset=set_maxlevel, doc='''
 Can be used to set or get the maximum level of a sound. For mono
 sounds, this is the same as the level, but for multichannel sounds
 it is the maximum level across the channels. Relative level differences
 will be preserved. The specified level should be a value in dB, and it
 is assumed that the unit of the sound is Pascals.
 ''')

[docs] def atmaxlevel(self, level):
 '''
 Returns the sound with the maximum level across channels set to the
 given level. Relative level differences will be preserved. The specified
 level should be a value in dB and it is assumed that the unit of the
 sound is Pascals.
 '''
 newsound = self.copy()
 newsound.maxlevel = level
 return newsound

[docs] def ramp(self, when='onset', duration=10*ms, envelope=None, inplace=True):
 '''
 Adds a ramp on/off to the sound

 ``when='onset'``
 Can take values 'onset', 'offset' or 'both'
 ``duration=10*ms``
 The time over which the ramping happens
 ``envelope``
 A ramping function, if not specified uses ``sin(pi*t/2)**2``. The
 function should be a function of one variable ``t`` ranging from
 0 to 1, and should increase from ``f(0)=0`` to ``f(0)=1``. The
 reverse is applied for the offset ramp.
 ``inplace``
 Whether to apply ramping to current sound or return a new array.
 '''
 when = when.lower().strip()
 if envelope is None: envelope = lambda t:np.sin(np.pi * t / 2) ** 2
 if not isinstance(duration, int):
 sz = int(np.rint(duration * self.samplerate))
 else:
 sz = duration
 multiplier = envelope(np.reshape(np.linspace(0.0, 1.0, sz), (sz, 1)))
 if inplace:
 target = self
 else:
 target = Sound(np.copy(self), self.samplerate)
 if when == 'onset' or when == 'both':
 target[:sz, :] *= multiplier
 if when == 'offset' or when == 'both':
 target[target.nsamples-sz:, :] *= multiplier[::-1]
 return target

[docs] @check_units(duration=second)
 def ramped(self, when='onset', duration=10*ms, envelope=None):
 '''
 Returns a ramped version of the sound (see :meth:`Sound.ramp`).
 '''
 return self.ramp(when=when, duration=duration, envelope=envelope, inplace=False)

 def fft(self,n=None):
 '''
 Performs an n-point FFT on the sound object, that is an array of the same size containing the DFT of each
 channel. n defaults to the number of samples of the sound, but can be changed manually setting the ``n`` keyword
 argument
 '''
 if n is None:
 n=self.shape[0]
 res=np.zeros(n,self.nchannels)
 for i in range(self.nchannels):
 res[:,i]=fft(np.asarray(self)[:,i].flatten(),n=n)
 return res

[docs] @staticmethod
 @check_units(frequency=Hz, duration=second, samplerate=Hz)
 def tone(frequency, duration, phase=0, samplerate=None, nchannels=1):
 '''
 Returns a pure tone at frequency for duration, using the default
 samplerate or the given one. The ``frequency`` and ``phase`` parameters
 can be single values, in which case multiple channels can be
 specified with the ``nchannels`` argument, or they can be sequences
 (lists/tuples/arrays) in which case there is one frequency or phase for
 each channel.
 '''
 samplerate = get_samplerate(samplerate)
 duration = get_duration(duration, samplerate)
 frequency = np.asarray(frequency)*Hz
 phase = np.array(phase)
 if frequency.size>nchannels and nchannels==1:
 nchannels = frequency.size
 if phase.size>nchannels and nchannels==1:
 nchannels = phase.size
 if frequency.size==nchannels:
 frequency.shape = (1, nchannels)
 if phase.size==nchannels:
 phase.shape =(nchannels, 1)
 t = np.arange(0, duration, 1)/samplerate
 t.shape = (t.size, 1) # ensures C-order (in contrast to tile(...).T)
 x = np.sin(phase + 2.0 * np.pi * frequency * np.tile(t, (1, nchannels)))
 return Sound(x, samplerate)

[docs] @staticmethod
 @check_units(f0=Hz, duration=second, samplerate=Hz)
 def harmoniccomplex(f0, duration, amplitude=1, phase=0, samplerate=None, nchannels=1):
 '''
 Returns a harmonic complex composed of pure tones at integer multiples
 of the fundamental frequency ``f0``.
 The ``amplitude`` and
 ``phase`` keywords can be set to either a single value or an
 array of values. In the former case the value is set for all
 harmonics, and harmonics up to the sampling frequency are
 generated. In the latter each harmonic parameter is set
 separately, and the number of harmonics generated corresponds
 to the length of the array.
 '''
 samplerate=get_samplerate(samplerate)

 phases = np.array(phase).flatten()
 amplitudes = np.array(amplitude).flatten()

 if len(phases)>1 or len(amplitudes)>1:
 if (len(phases)>1 and len(amplitudes)>1) and (len(phases) != len(amplitudes)):
 raise ValueError('Please specify the same number of phases and amplitudes')
 Nharmonics = max(len(phases),len(amplitudes))
 else:
 Nharmonics = int(np.floor(samplerate/(2*f0)))

 if len(phases) == 1:
 phases = np.tile(phase, Nharmonics)
 if len(amplitudes) == 1:
 amplitudes = np.tile(amplitude, Nharmonics)

 x = amplitudes[0]*tone(f0, duration, phase = phases[0],
 samplerate = samplerate, nchannels = nchannels)
 for i in range(1,Nharmonics):
 x += amplitudes[i]*tone((i+1)*f0, duration, phase = phases[i],
 samplerate = samplerate, nchannels = nchannels)
 return Sound(x,samplerate)

[docs] @staticmethod
 @check_units(duration=second, samplerate=Hz)
 def whitenoise(duration, samplerate=None, nchannels=1):
 '''
 Returns a white noise. If the samplerate is not specified, the global
 default value will be used.
 '''
 samplerate = get_samplerate(samplerate)
 duration = get_duration(duration,samplerate)
 x = randn(duration,nchannels)
 return Sound(x, samplerate)

[docs] @staticmethod
 @check_units(duration=second, samplerate=Hz)
 def powerlawnoise(duration, alpha, samplerate=None, nchannels=1,normalise=False):
 '''
 Returns a power-law noise for the given duration. Spectral density per unit of bandwidth scales as 1/(f**alpha).

 Sample usage::

 noise = powerlawnoise(200*ms, 1, samplerate=44100*Hz)

 Arguments:

 ``duration``
 Duration of the desired output.
 ``alpha``
 Power law exponent.
 ``samplerate``
 Desired output samplerate
 '''
 samplerate = get_samplerate(samplerate)
 duration = get_duration(duration,samplerate)

 # Adapted from http://www.eng.ox.ac.uk/samp/software/powernoise/powernoise.m
 # Little MA et al. (2007), "Exploiting nonlinear recurrence and fractal
 # scaling properties for voice disorder detection", Biomed Eng Online, 6:23
 n=duration
 n2=int(n/2)

 f=np.array(fftfreq(n,d=1.0/samplerate), dtype=complex)
 f.shape=(len(f),1)
 f=np.tile(f,(1,nchannels))

 if n%2==1:
 z=(randn(n2,nchannels)+1j*randn(n2,nchannels))
 a2=1.0/(f[1:(n2+1),:]**(alpha/2.0))
 else:
 z=(randn(n2-1,nchannels)+1j*randn(n2-1,nchannels))
 a2=1.0/(f[1:n2,:]**(alpha/2.0))

 a2*=z

 if n%2==1:
 d=np.vstack((np.ones((1,nchannels)),a2,
 np.flipud(np.conj(a2))))
 else:
 d=np.vstack((np.ones((1,nchannels)),a2,
 1.0/(abs(f[n2])**(alpha/2.0))*
 randn(1,nchannels),
 np.flipud(np.conj(a2))))

 x=np.real(ifft(d.flatten()))
 x.shape=(n,nchannels)

 if normalise:
 for i in range(nchannels):
 #x[:,i]=normalise_rms(x[:,i])
 x[:,i] = ((x[:,i] - np.amin(x[:,i]))/(np.amax(x[:,i]) - np.amin(x[:,i])) - 0.5) * 2;

 return Sound(x,samplerate)

[docs] @staticmethod
 @check_units(duration=second, samplerate=Hz)
 def pinknoise(duration, samplerate=None, nchannels=1, normalise=False):
 '''
 Returns pink noise, i.e :func:`powerlawnoise` with alpha=1
 '''
 return Sound.powerlawnoise(duration, 1.0, samplerate=samplerate,
 nchannels=nchannels, normalise=normalise)

[docs] @staticmethod
 @check_units(duration=second, samplerate=Hz)
 def brownnoise(duration, samplerate=None, nchannels=1, normalise=False):
 '''
 Returns brown noise, i.e :func:`powerlawnoise` with alpha=2
 '''
 return Sound.powerlawnoise(duration, 2.0, samplerate=samplerate,
 nchannels=nchannels, normalise=normalise)

 @staticmethod
 @check_units(duration=second, samplerate=Hz)
 def irns(delay, gain, niter, duration, samplerate=None, nchannels=1):
 '''
 Returns an IRN_S noise. The iterated ripple noise is obtained trough
 a cascade of gain and delay filtering.
 For more details: see Yost 1996 or chapter 15 in Hartman Sound Signal Sensation.
 '''
 if nchannels!=1:
 raise ValueError("nchannels!=1 not supported.")
 samplerate = get_samplerate(samplerate)
 noise=Sound.whitenoise(duration)
 splrate=noise.samplerate
 x=np.array(noise.T)[0]
 IRNfft=fft(x)
 Nspl,spl_dur=len(IRNfft),float(1.0/splrate)
 w=2*np.pi*fftfreq(Nspl,spl_dur)
 d=float(delay)
 for k in range(1,niter+1):
 nchoosek=factorial(niter)/(factorial(niter-k)*factorial(k))
 IRNfft+=nchoosek*(gain**k)*IRNfft*np.exp(-1j*w*k*d)
 IRNadd = ifft(IRNfft)
 x=np.real(IRNadd)
 return Sound(x,samplerate)

 @staticmethod
 @check_units(duration=second, samplerate=Hz)
 def irno(delay, gain, niter, duration, samplerate=None, nchannels=1):
 '''
 Returns an IRN_O noise. The iterated ripple noise is obtained many attenuated and
 delayed version of the original broadband noise.
 For more details: see Yost 1996 or chapter 15 in Hartman Sound Signal Sensation.
 '''
 samplerate = get_samplerate(samplerate)
 noise=Sound.whitenoise(duration)
 splrate=noise.samplerate
 x=np.array(noise.T)[0]
 IRNadd=fft(x)
 Nspl,spl_dur=len(IRNadd),float(1.0/splrate)
 w=2*np.pi*fftfreq(Nspl,spl_dur)
 d=float(delay)
 for k in range(1,niter+1):
 IRNadd+=(gain**k)*IRNadd*np.exp(-1j*w*k*d)
 IRNadd = ifft(IRNadd)
 x=np.real(IRNadd)
 return Sound(x, samplerate)

[docs] @staticmethod
 @check_units(samplerate=Hz)
 def click(duration=1, peak=None, samplerate=None, nchannels=1):
 '''
 Returns a click of the given duration (in time or samples)

 If ``peak`` is not specified, the amplitude will be 1, otherwise
 ``peak`` refers to the peak dB SPL of the click, according to the
 formula ``28e-6*10**(peak/20.)``.
 '''
 samplerate = get_samplerate(samplerate)
 duration = get_duration(duration, samplerate)
 if peak is not None:
 if not isinstance(peak, dB_type):
 raise dB_error('Peak must be given in dB')
 amplitude = 28e-6*10**(float(peak)/20.)
 else:
 amplitude = 1
 x = amplitude*np.ones((duration,nchannels))
 return Sound(x, samplerate)

[docs] @staticmethod
 @check_units(duration=second, samplerate=Hz)
 def clicks(duration, n, interval, peak=None, samplerate=None, nchannels=1):
 '''
 Returns a series of n clicks (see :func:`click`) separated by interval.
 '''
 oneclick = Sound.click(duration, peak=peak, samplerate=samplerate)
 return oneclick[slice(None, interval)].repeat(n)

[docs] @staticmethod
 @check_units(duration=second, samplerate=Hz)
 def silence(duration, samplerate=None, nchannels=1):
 '''
 Returns a silent, zero sound for the given duration. Set nchannels to set the number of channels.
 '''
 samplerate = get_samplerate(samplerate)
 duration = get_duration(duration,samplerate)
 x=np.zeros((duration,nchannels))
 return Sound(x, samplerate)

[docs] @staticmethod
 @check_units(pitch=Hz, duration=second, samplerate=Hz)
 def vowel(vowel=None, formants=None, pitch=100*Hz, duration=1*second,
 samplerate=None, nchannels=1):
 '''
 Returns an artifically created spoken vowel sound (following the
 source-filter model of speech production) with a given ``pitch``.

 The vowel can be specified by either providing ``vowel`` as a string
 ('a', 'i' or 'u') or by setting ``formants`` to a sequence of formant
 frequencies.

 The returned sound is normalized to a maximum amplitude of 1.

 The implementation is based on the MakeVowel function written by Richard
 O. Duda, part of the Auditory Toolbox for Matlab by Malcolm Slaney:
 https://engineering.purdue.edu/~malcolm/interval/1998-010/
 '''

 samplerate = get_samplerate(samplerate)
 duration = get_duration(duration, samplerate)

 if not (vowel or formants):
 raise ValueError('Need either a vowel or a list of formants')
 elif (vowel and formants):
 raise ValueError('Cannot use both vowel and formants')

 if vowel:
 if vowel == 'a' or vowel == '/a/':
 formants = (730.0*Hz, 1090.0*Hz, 2440.0*Hz)
 elif vowel == 'i' or vowel == '/i/':
 formants = (270.0*Hz, 2290.0*Hz, 3010.0*Hz)
 elif vowel == 'u' or vowel == '/u/':
 formants = (300.0*Hz, 870.0*Hz, 2240.0*Hz)
 else:
 raise ValueError('Unknown vowel: "%s"' % (vowel))

 points = np.arange(0, duration - 1, samplerate / pitch)

 indices = np.floor(points).astype(int)

 y = np.zeros(duration)

 y[indices] = (indices + 1) - points
 y[indices + 1] = points - indices

 # model the sound source (periodic glottal excitation)
 a = np.exp(-250.*Hz * 2 * np.pi / samplerate)
 y = lfilter([1],[1, 0, -a * a], y.copy())

 # model the filtering by the vocal tract
 bandwidth = 50.*Hz

 for f in formants:
 cft = f / samplerate
 q = f / bandwidth
 rho = np.exp(-np.pi * cft / q)
 theta = 2 * np.pi * cft * np.sqrt(1 - 1/(4.0 * q * q))
 a2 = -2 * rho * np.cos(theta)
 a3 = rho * rho
 y = lfilter([1 + a2 + a3], [1, a2, a3], y.copy())

 #normalize sound
 data = y / np.max(np.abs(y), axis=0)
 data.shape = (data.size, 1)
 return Sound(np.tile(data, (nchannels, 1)), samplerate=samplerate)

[docs] @staticmethod
 def sequence(*args, **kwds):
 '''
 Returns the sequence of sounds in the list sounds joined together
 '''
 samplerate = kwds.pop('samplerate', None)
 if len(kwds):
 raise TypeError('Unexpected keywords to function sequence()')
 sounds = []
 for arg in args:
 if isinstance(arg, (list, tuple)):
 sounds.extend(arg)
 else:
 sounds.append(arg)
 if samplerate is None:
 samplerate = max(s.samplerate for s in sounds)
 rates = np.unique([int(s.samplerate) for s in sounds])
 if len(rates)>1:
 sounds = tuple(s.resample(samplerate) for s in sounds)
 x = np.vstack(sounds)
 return Sound(x, samplerate)

[docs] def save(self, filename, normalise=False, samplewidth=2):
 '''
 Save the sound as a WAV.

 If the normalise keyword is set to True, the amplitude of the sound will be
 normalised to 1. The samplewidth keyword can be 1 or 2 to save the data as
 8 or 16 bit samples.
 '''
 ext = filename.split('.')[-1].lower()
 if ext=='wav':
 import wave as sndmodule
 elif ext=='aiff' or ext=='aifc':
 import aifc as sndmodule
 raise NotImplementedError('Can only save as wav soundfiles')
 else:
 raise NotImplementedError('Can only save as wav soundfiles')

 if samplewidth != 1 and samplewidth != 2:
 raise ValueError('Sample width must be 1 or 2 bytes.')

 scale = {2:2**15-1, 1: 2**7-1}[samplewidth]
 if ext=='wav':
 meanval = {2:0, 1:2**7}[samplewidth]
 dtype = {2:np.int16, 1:np.uint8}[samplewidth]
 typecode = {2:'h', 1:'B'}[samplewidth]
 else:
 meanval = {2:0, 1:2**7}[samplewidth]
 dtype = {2:np.int16, 1:np.uint8}[samplewidth]
 typecode = {2:'h', 1:'B'}[samplewidth]
 w = sndmodule.open(filename, 'wb')
 w.setnchannels(self.nchannels)
 w.setsampwidth(samplewidth)
 w.setframerate(int(self.samplerate))
 x = np.array(self,copy=True)
 am=np.amax(x)
 z = np.zeros(x.shape[0]*self.nchannels, dtype=x.dtype)
 x.shape=(x.shape[0],self.nchannels)
 for i in range(self.nchannels):
 if normalise:
 x[:,i] /= am
 x[:,i] = (x[:,i]) * scale + meanval
 z[i::self.nchannels] = x[::1,i]
 data = np.array(z, dtype=dtype)
 data = pyarray.array(typecode, data)
 try:
 out = data.tobytes()
 except AttributeError:
 out = data.tostring()
 w.writeframes(out)
 w.close()

[docs] @staticmethod
 def load(filename):
 '''
 Load the file given by filename and returns a Sound object.
 Sound file can be either a .wav or a .aif file.
 '''
 ext = filename.split('.')[-1].lower()
 if ext=='wav':
 import wave as sndmodule
 elif ext=='aif' or ext=='aiff':
 import aifc as sndmodule
 else:
 raise NotImplementedError('Can only load aif or wav soundfiles')
 wav = sndmodule.open(filename, "r")
 nchannels, sampwidth, framerate, nframes, comptype, compname = wav.getparams()
 frames = wav.readframes(nframes * nchannels)
 typecode = {2:'h', 1:'B'}[sampwidth]
 out = np.frombuffer(frames, dtype=np.dtype(typecode))
 scale = {2:2 ** 15, 1:2 ** 7-1}[sampwidth]
 meanval = {2:0, 1:2**7}[sampwidth]

 data = np.zeros((nframes, nchannels))
 for i in range(nchannels):
 data[:, i] = out[i::nchannels]
 data[:, i] /= scale
 data[:, i] -= meanval

 return Sound(data, samplerate=framerate*Hz)

 def __repr__(self):
 arrayrep = repr(np.asarray(self))
 arrayrep = '\n'.join(' '+l for l in arrayrep.split('\n'))
 return 'Sound(\n'+arrayrep+',\n '+repr(self.samplerate)+')'

 def __str__(self):
 return 'Sound duration %s, channels %s, samplerate %s' % (self.duration,
 self.nchannels,
 self.samplerate)

 def __reduce__(self):
 return (_load_Sound_from_pickle, (np.asarray(self), float(self.samplerate)))

def _load_Sound_from_pickle(arr, samplerate):
 return Sound(arr, samplerate=samplerate*Hz)

[docs]def play(*sounds, **kwds):
 '''
 Plays a sound or sequence of sounds. For example::

 play(sound)
 play(sound1, sound2)
 play([sound1, sound2, sound3])

 If ``normalise=True``, the sequence of sounds will be normalised to the
 maximum range (-1 to 1), and if ``sleep=True`` the function will wait
 until the sounds have finished playing before returning.
 '''
 normalise = kwds.pop('normalise', False)
 sleep = kwds.pop('sleep', False)
 if len(kwds):
 raise TypeError('Unexpected keyword arguments to function play()')
 sound = sequence(*sounds)
 sound.play(normalise=normalise, sleep=sleep)

play.__doc__ = Sound.play.__doc__

[docs]def savesound(sound, filename, normalise=False, samplewidth=2):
 sound.save(filename, normalise=normalise, samplewidth=samplewidth)

savesound.__doc__ = Sound.save.__doc__

def get_duration(duration,samplerate):
 if not isinstance(duration, int):
 duration = int(np.rint(duration * samplerate))
 return duration

whitenoise = Sound.whitenoise
powerlawnoise = Sound.powerlawnoise
pinknoise = Sound.pinknoise
brownnoise = Sound.brownnoise
irns = Sound.irns
irno = Sound.irno
tone = Sound.tone
harmoniccomplex = Sound.harmoniccomplex
click = Sound.click
clicks = Sound.clicks
silence = Sound.silence
sequence = Sound.sequence
vowel = Sound.vowel
loadsound = Sound.load

 Source code for brian2hears.filtering.dcgc

import numpy as np

from brian2 import ms, kHz

from .filterbank import (ControlFilterbank, CombinedFilterbank,
 RestructureFilterbank)
from .filterbanklibrary import *

__all__ = ['DCGC']

def set_parameters(cf,param):

 parameters=dict()
 parameters['b1'] = 1.81
 parameters['c1'] = -2.96
 parameters['b2'] = 2.17
 parameters['c2'] = 2.2
 parameters['decay_tcst'] = .5*ms
 parameters['lev_weight'] = .5
 parameters['level_ref'] = 50.
 parameters['level_pwr1'] = 1.5
 parameters['level_pwr2'] = .5
 parameters['RMStoSPL'] = 30.
 parameters['frat0'] = .2330
 parameters['frat1'] = .005
 parameters['lct_ERB'] = 1.5 #value of the shift in ERB frequencies
 parameters['frat_control'] = 1.08
 parameters['order_gc']=4
 parameters['ERBrate']= 21.4*np.log10(4.37*(cf/kHz)+1)
 parameters['ERBwidth']= 24.7*(4.37*(cf/kHz)+1)

 if param:
 if not isinstance(param, dict):
 raise TypeError('given parameters must be a dict')
 for key in param.keys():
 if not key in parameters:
 raise Exception(key + ' is invalid key entry for given parameters')
 parameters[key] = param[key]

 return parameters

#defition of the controler class
class AsymCompUpdate:
 def __init__(self,target,samplerate,fp1,param):
 fp1=np.atleast_1d(fp1)
 self.iteration=0
 self.target=target
 self.samplerate=samplerate
 self.fp1=fp1
 self.exp_deca_val = np.exp(-1/(param['decay_tcst'] *samplerate)*np.log(2))
 self.level_min = 10**(- param['RMStoSPL']/20)
 self.level_ref = 10**((param['level_ref'] - param['RMStoSPL'])/20)
 self.b=param['b2']
 self.c=param['c2']
 self.lev_weight=param['lev_weight']
 self.level_ref=param['level_ref']
 self.level_pwr1=param['level_pwr1']
 self.level_pwr2=param['level_pwr2']
 self.RMStoSPL=param['RMStoSPL']
 self.frat0=param['frat0']
 self.frat1=param['frat1']
 self.level1_prev=-100
 self.level2_prev=-100
 self.p0=2
 self.p1=1.7818*(1-0.0791*self.b)*(1-0.1655*abs(self.c))
 self.p2=0.5689*(1-0.1620*self.b)*(1-0.0857*abs(self.c))
 self.p3=0.2523*(1-0.0244*self.b)*(1+0.0574*abs(self.c))
 self.p4=1.0724
 def __call__(self,*input):
 value1=input[0][-1,:]
 value2=input[1][-1,:]
 level1 = np.maximum(np.maximum(value1,0),self.level1_prev*self.exp_deca_val)
 level2 = np.maximum(np.maximum(value2,0),self.level2_prev*self.exp_deca_val)
 self.level1_prev=level1
 self.level2_prev=level2
 level_total=self.lev_weight*self.level_ref*(level1/self.level_ref)**self.level_pwr1+(1-self.lev_weight)*self.level_ref*(level2/self.level_ref)**self.level_pwr2
 level_dB=20*np.log10(np.maximum(level_total,self.level_min))+self.RMStoSPL
 frat = self.frat0 + self.frat1*level_dB
 fr2 = self.fp1*frat
 self.iteration+=1
 self.target.filt_b, self.target.filt_a=asymmetric_compensation_coeffs(self.samplerate,fr2,self.target.filt_b,self.target.filt_a,self.b,self.c,self.p0,self.p1,self.p2,self.p3,self.p4)

[docs]class DCGC(CombinedFilterbank):
 '''
 The compressive gammachirp auditory filter as described in Irino, T. and
 Patterson R., "A compressive gammachirp auditory filter for both
 physiological and psychophysical data", JASA 2001.

 Technical implementation details and notation can be found in Irino, T. and
 Patterson R., "A Dynamic Compressive Gammachirp Auditory Filterbank",
 IEEE Trans Audio Speech Lang Processing.

 The model consists of a control pathway and a signal pathway in parallel.

 The control pathway consists of a bank of bandpass filters followed by a
 bank of highpass filters (this chain yields a bank of gammachirp filters).

 The signal pathway consist of a bank of fix bandpass filters followed by a
 bank of highpass filters with variable cutoff frequencies (this chain
 yields a bank of gammachirp filters with a level-dependent bandwidth). The
 highpass filters of the signal pathway are controlled
 by the output levels of the two stages of the control pathway.

 Initialised with arguments:

 ``source``
 Source of the cochlear model.

 ``cf``
 List or array of center frequencies.

 ``update_interval``
 Interval in samples controlling how often the band pass filter of the
 signal pathway is updated. Smaller values are more accurate, but give
 longer computation times.

 ``param``
 Dictionary used to overwrite the default parameters given in the
 original paper.

 The possible parameters to change and their default values (see Irino, T.
 and Patterson R., "A Dynamic Compressive Gammachirp
 Auditory Filterbank", IEEE Trans Audio Speech Lang Processing) are::

 param['b1'] = 1.81
 param['c1'] = -2.96
 param['b2'] = 2.17
 param['c2'] = 2.2
 param['decay_tcst'] = .5*ms
 param['lev_weight'] = .5
 param['level_ref'] = 50.
 param['level_pwr1'] = 1.5
 param['level_pwr2'] = .5
 param['RMStoSPL'] = 30.
 param['frat0'] = .2330
 param['frat1'] = .005
 param['lct_ERB'] = 1.5 #value of the shift in ERB frequencies
 param['frat_control'] = 1.08
 param['order_gc']=4
 param['ERBrate']= 21.4*log10(4.37*cf/1000+1) # cf is the center frequency
 param['ERBwidth']= 24.7*(4.37*cf/1000 + 1)
 '''

 def __init__(self, source,cf,update_interval=1,param={}):

 CombinedFilterbank.__init__(self, source)
 source = self.get_modified_source()

 parameters=set_parameters(cf,param)
 ERBspace = np.mean(np.diff(parameters['ERBrate']))
 cf = np.asarray(np.atleast_1d(cf))
 #bank of passive gammachirp filters. As the control path uses the same passive filterbank than the signal path (buth shifted in frequency)
 #this filterbanl is used by both pathway.
 pGc=LogGammachirp(source,cf,b=parameters['b1'], c=parameters['c1'])
self.gc.filt_b=pGc.filt_b
self.gc.filt_a=pGc.filt_a
 fp1 = cf + parameters['c1']*parameters['ERBwidth']*parameters['b1']/parameters['order_gc']
 nbr_cf=len(cf)
 #### Control Path ####
 n_ch_shift = round(parameters['lct_ERB']/ERBspace); #value of the shift in channels
 indch1_control = np.minimum(np.maximum(1, np.arange(1,nbr_cf+1)+n_ch_shift),nbr_cf).astype(int)-1
 fp1_control = fp1[indch1_control]
 pGc_control=RestructureFilterbank(pGc,indexmapping=indch1_control)
 fr2_control = parameters['frat_control']*fp1_control
 asym_comp_control=AsymmetricCompensation(pGc_control, fr2_control,b=parameters['b2'], c=parameters['c2'])

 #### Signal Path ####
 fr1=fp1*parameters['frat0']
 signal_path= AsymmetricCompensation(pGc, fr1,b=parameters['b2'], c=parameters['c2'])
self.asym_comp.filt_b=signal_path.filt_b
self.asym_comp.filt_a=signal_path.filt_a
 #### Controler ####
 updater = AsymCompUpdate(signal_path,source.samplerate,fp1,parameters) #the updater
 control = ControlFilterbank(signal_path, [pGc_control,asym_comp_control], signal_path, updater, update_interval)

 self.set_output(control)

 Source code for brian2hears.filtering.drnl

import numpy as np

from .filterbank import FunctionFilterbank, CombinedFilterbank
from .filterbanklibrary import *

__all__ = ['DRNL']

def set_parameters(cf,type,param):

 parameters=dict()
 parameters['stape_scale']=0.00014
 parameters['order_linear']=3
 parameters['order_nonlinear']=3

 if type=='guinea pig':
 parameters['cf_lin_p0']=0.339
 parameters['cf_lin_m']=0.339
 parameters['bw_lin_p0']=1.3
 parameters['bw_lin_m']=0.53
 parameters['cf_nl_p0']=0
 parameters['cf_nl_m']=1.
 parameters['bw_nl_p0']=0.8
 parameters['bw_nl_m']=0.58
 parameters['a_p0']=1.87
 parameters['a_m']=0.45
 parameters['b_p0']=-5.65
 parameters['b_m']=0.875
 parameters['c_p0']=-1.
 parameters['c_m']=0
 parameters['g_p0']=5.68
 parameters['g_m']=-0.97
 parameters['lp_lin_cutoff_p0']=0.339
 parameters['lp_lin_cutoff_m']=0.339
 parameters['lp_nl_cutoff_p0']=0
 parameters['lp_nl_cutoff_m']=1.

 elif type=='human':
 parameters['cf_lin_p0']=-0.067
 parameters['cf_lin_m']=1.016
 parameters['bw_lin_p0']=0.037
 parameters['bw_lin_m']=0.785
 parameters['cf_nl_p0']=-0.052
 parameters['cf_nl_m']=1.016
 parameters['bw_nl_p0']=-0.031
 parameters['bw_nl_m']=0.774
 parameters['a_p0']=1.402
 parameters['a_m']=0.819
 parameters['b_p0']=1.619
 parameters['b_m']=-0.818
 parameters['c_p0']=-0.602
 parameters['c_m']=0
 parameters['g_p0']=4.2
 parameters['g_m']=0.48
 parameters['lp_lin_cutoff_p0']=-0.067
 parameters['lp_lin_cutoff_m']=1.016
 parameters['lp_nl_cutoff_p0']=-0.052
 parameters['lp_nl_cutoff_m']=1.016

 if param:
 if not isinstance(param, dict):
 raise TypeError('given parameters must be a dict')
 for key in param.keys():
 if not key in parameters:
 raise Exception(key + ' is invalid key entry for given parameters')
 parameters[key] = param[key]
 return parameters

[docs]class DRNL(CombinedFilterbank):
 r'''
 Implementation of the dual resonance nonlinear (DRNL) filter
 as described in Lopez-Paveda, E. and Meddis, R.,
 "A human nonlinear cochlear filterbank", JASA 2001.

 The entire pathway consists of the sum of a linear and a nonlinear pathway.

 The linear path consists of a bank of bandpass filters (second order
 gammatone), a low pass function, and a gain/attenuation factor, g, in a
 cascade.

 The nonlinear path is a cascade consisting of a bank of gammatone filters, a
 compression function, a second bank of gammatone filters, and a low
 pass function, in that order.

 Initialised with arguments:

 ``source``
 Source of the cochlear model.

 ``cf``
 List or array of center frequencies.

 ``type``
 defines the parameters set corresponding to a certain fit. It can be
 either:

 ``type='human'``
 The parameters come from Lopez-Paveda, E. and Meddis, R.., "A human
 nonlinear cochlear filterbank", JASA 2001.

 ``type ='guinea pig'``
 The parameters come from Summer et al., "A nonlinear filter-bank
 model of the guinea-pig cochlear nerve: Rate responses", JASA 2003.

 ``param``
 Dictionary used to overwrite the default parameters given in the
 original papers.

 The possible parameters to change and their default values for humans (see
 Lopez-Paveda, E. and Meddis, R.,"A human nonlinear cochlear filterbank",
 JASA 2001. for notation) are::

 param['stape_scale']=0.00014
 param['order_linear']=3
 param['order_nonlinear']=3

 from there on the parameters are given in the form
 :math:`x=10^{\mathrm{p0}+m\log_{10}(\mathrm{cf})}` where
 ``cf`` is the center frequency::

 param['cf_lin_p0']=-0.067
 param['cf_lin_m']=1.016
 param['bw_lin_p0']=0.037
 param['bw_lin_m']=0.785
 param['cf_nl_p0']=-0.052
 param['cf_nl_m']=1.016
 param['bw_nl_p0']=-0.031
 param['bw_nl_m']=0.774
 param['a_p0']=1.402
 param['a_m']=0.819
 param['b_p0']=1.619
 param['b_m']=-0.818
 param['c_p0']=-0.602
 param['c_m']=0
 param['g_p0']=4.2
 param['g_m']=0.48
 param['lp_lin_cutoff_p0']=-0.067
 param['lp_lin_cutoff_m']=1.016
 param['lp_nl_cutoff_p0']=-0.052
 param['lp_nl_cutoff_m']=1.016
 '''

 def __init__(self, source, cf, type='human', param={}):

 CombinedFilterbank.__init__(self, source)
 source = self.get_modified_source()

 cf = np.asarray(np.atleast_1d(cf))
 nbr_cf=len(cf)
 parameters=set_parameters(cf,type,param)

 #conversion to stape velocity (which are the units needed for the further centres)
 source=source*parameters['stape_scale']

 #### Linear Pathway ####
 #bandpass filter (second order gammatone filter)
 cf_linear=10**(parameters['cf_lin_p0']+parameters['cf_lin_m']*np.log10(cf))
 bandwidth_linear=10**(parameters['bw_lin_p0']+parameters['bw_lin_m']*np.log10(cf))
 gammatone=ApproximateGammatone(source, cf_linear, bandwidth_linear, order=parameters['order_linear'])
 #linear gain
 g=10**(parameters['g_p0']+parameters['g_m']*np.log10(cf))
 func_gain=lambda x:g*x
 gain= FunctionFilterbank(gammatone,func_gain)
 #low pass filter(cascade of 4 second order lowpass butterworth filters)
 cutoff_frequencies_linear=10**(parameters['lp_lin_cutoff_p0']+parameters['lp_lin_cutoff_m']*np.log10(cf))
 order_lowpass_linear=2
 lp_l=LowPass(gain,cutoff_frequencies_linear)
 lowpass_linear=Cascade(gain,lp_l,4)

 #### Nonlinear Pathway ####
 #bandpass filter (third order gammatone filters)
 cf_nonlinear=10**(parameters['cf_nl_p0']+parameters['cf_nl_m']*np.log10(cf))
 bandwidth_nonlinear=10**(parameters['bw_nl_p0']+parameters['bw_nl_m']*np.log10(cf))
 bandpass_nonlinear1=ApproximateGammatone(source, cf_nonlinear, bandwidth_nonlinear, order=parameters['order_nonlinear'])
 #compression (linear at low level, compress at high level)
 a=10**(parameters['a_p0']+parameters['a_m']*np.log10(cf)) #linear gain
 b=10**(parameters['b_p0']+parameters['b_m']*np.log10(cf))
 v=10**(parameters['c_p0']+parameters['c_m']*np.log10(cf))#compression exponent
 func_compression=lambda x:np.sign(x)*np.minimum(a*abs(x),b*abs(x)**v)
 compression=FunctionFilterbank(bandpass_nonlinear1, func_compression)
 #bandpass filter (third order gammatone filters)
 bandpass_nonlinear2=ApproximateGammatone(compression, cf_nonlinear, bandwidth_nonlinear, order=parameters['order_nonlinear'])
 #low pass filter
 cutoff_frequencies_nonlinear=10**(parameters['lp_nl_cutoff_p0']+parameters['lp_nl_cutoff_m']*np.log10(cf))
 order_lowpass_nonlinear=2
 lp_nl=LowPass(bandpass_nonlinear2,cutoff_frequencies_nonlinear)
 lowpass_nonlinear=Cascade(bandpass_nonlinear2,lp_nl,3)
 #adding the two pathways
 drnl_filter=lowpass_linear+lowpass_nonlinear

 self.set_output(drnl_filter)

 Source code for brian2hears.filtering.filterbank

from builtins import all, sum, range

import numpy as np

from brian2hears.bufferable import Bufferable

__all__ = ['Filterbank',
 'RestructureFilterbank',
 'Repeat', 'Tile', 'Join', 'Interleave',
 'FunctionFilterbank',
 'SumFilterbank',
 'DoNothingFilterbank',
 'ControlFilterbank',
 'CombinedFilterbank',
]

[docs]class Filterbank(Bufferable):
 '''
 Generalised filterbank object

 Documentation common to all filterbanks

 Filterbanks all share a few basic attributes:

 .. autoattribute:: source

 .. attribute:: nchannels

 The number of channels.

 .. attribute:: samplerate

 The sample rate.

 .. autoattribute:: duration

 To process the output of a filterbank, the following method can be used:

 .. automethod:: process

 Alternatively, the buffer interface can be used, which is described in
 more detail below.

 Filterbank also defines arithmetical operations for +, -, ``*``, / where the other
 operand can be a filterbank or scalar.

 Details on the class

 This class is a base class not designed to be instantiated. A Filterbank
 object should define the interface of :class:`Bufferable`, as well as
 defining a ``source`` attribute. This is normally a :class:`Bufferable`
 object, but could be an iterable of sources (for example, for filterbanks
 that mix or add multiple inputs).

 The ``buffer_fetch_next(samples)`` method has a default implementation
 that fetches the next input, and calls the ``buffer_apply(input)``
 method on it, which can be overridden by a derived class. This is typically
 the easiest way to implement a new filterbank. Filterbanks with multiple
 sources will need to override this default implementation.

 There is a default ``__init__`` method that can be called by a derived class
 that sets the ``source``, ``nchannels`` and ``samplerate`` from that of the
 ``source`` object. For multiple sources, the default implementation will
 check that each source has the same number of channels and samplerate and
 will raise an error if not.

 There is a default ``buffer_init()`` method that calls ``buffer_init()`` on
 the ``source`` (or list of sources).

 Example of deriving a class

 The following class takes N input channels and sums them to a single output
 channel::

 class AccumulateFilterbank(Filterbank):
 def __init__(self, source):
 Filterbank.__init__(self, source)
 self.nchannels = 1
 def buffer_apply(self, input):
 return reshape(sum(input, axis=1), (input.shape[0], 1))

 Note that the default ``Filterbank.__init__`` will set the number of
 channels equal to the number of source channels, but we want to change it
 to have a single output channel. We use the ``buffer_apply`` method which
 automatically handles the efficient cacheing of the buffer for us. The
 method receives the array ``input`` which has shape ``(bufsize, nchannels)``
 and sums over the channels (``axis=1``). It's important to reshape the
 output so that it has shape ``(bufsize, outputnchannels)`` so that it can
 be used as the input to subsequent filterbanks.
 '''

 def __init__(self, source):
 if isinstance(source, Bufferable):
 self.source = source
 self.nchannels = source.nchannels
 self.samplerate = source.samplerate
 else:
 self.nchannels = source[0].nchannels
 self.samplerate = source[0].samplerate
 for s in source:
 if s.nchannels!=self.nchannels:
 raise ValueError('All sources must have the same number of channels.')
 if int(s.samplerate)!=int(self.samplerate):
 raise ValueError('All sources must have the same samplerate.')
 self.source = source

 def change_source(self, source):
 if not hasattr(self, '_source') or self._source is None:
 self._source = source
 return
 if isinstance(source, tuple):
 for s in source:
 if int(s.samplerate)!=int(self.samplerate):
 raise ValueError('source samplerate is wrong.')
 for news, olds in zip(source, self._source):
 if news.nchannels!=olds.nchannels:
 raise ValueError('New sources have different numbers of channels to old sources.')
 self._source = source
 return
 if source.nchannels==self.nchannels:
 self._source = source
 return
 if source.nchannels==1:
 self._source = Repeat(source, self.nchannels)
 else:
 raise ValueError('New source must have the same number of channels as old source.')

 source = property(fget=lambda self:self._source,
 fset=lambda self, source:self.change_source(source),
 doc='''
 The source of the filterbank, a :class:`Bufferable` object, e.g. another
 :class:`Filterbank` or a :class:`Sound`. It can also be a tuple of
 sources. Can be changed after the object
 is created, although note that for some filterbanks this may cause
 problems if they do make assumptions about the input based on the first
 source object they were passed. If this is causing problems, you can
 insert a dummy filterbank (:class:`DoNothingFilterbank`) which is
 guaranteed to work if you change the source.
 ''')

 def get_duration(self):
 if hasattr(self, '_duration'):
 return self._duration
 else:
 source = self.source
 if isinstance(source, Bufferable):
 source = [source]
 try:
 durations = [s.duration for s in source]
 duration = max(durations)
 return duration
 except KeyError:
 raise KeyError('Cannot compute duration from sources.')

 def set_duration(self, duration):
 self._duration = duration

 duration = property(fget=get_duration, fset=set_duration, doc='''
 The duration of the filterbank. If it is not specified by the user, it
 is computed by finding the maximum of its source durations. If these are
 not specified a :class:`KeyError` will be raised.
 ''')

[docs] def process(self, func=None, duration=None, buffersize=32):
 '''
 Returns the output of the filterbank for the given duration.

 ``func``
 If a function is specified, it should be a function of one or two
 arguments that will be called on each filtered buffered segment
 (of shape ``(buffersize, nchannels)`` in order. If the function has
 one argument, the argument should be buffered segment. If it has
 two arguments, the second argument is the value returned by the
 previous application of the function (or 0 for the first
 application). In this case, the method will return the final
 value returned by the function. See example below.
 ``duration=None``
 The length of time (in seconds) or number of samples to process.
 If no ``func`` is specified, the method will return an array of shape
 ``(duration, nchannels)`` with the filtered outputs. Note that in
 many cases, this will be too large to fit in memory, in which you
 will want to process the filtered outputs online, by providing
 a function ``func`` (see example below). If no duration is specified,
 the maximum duration of the inputs to the filterbank will be used,
 or an error raised if they do not have durations.
 ``buffersize=32``
 The size of the buffered segments to fetch, as a length of time or
 number of samples. 32 samples typically gives reasonably good
 performance.

 For example, to compute the RMS of each channel in a filterbank, you
 would do::

 def sum_of_squares(input, running_sum_of_squares):
 return running_sum_of_squares+sum(input**2, axis=0)
 rms = sqrt(fb.process(sum_of_squares)/nsamples)
 '''
 if duration is None:
 duration = self.duration
 if not isinstance(duration, int):
 duration = int(duration*self.samplerate)
 if not isinstance(buffersize, int):
 buffersize = int(buffersize*self.samplerate)
 self.buffer_init()
 endpoints = np.hstack((np.arange(0, duration, buffersize), duration))
 zendpoints = zip(endpoints[:-1], endpoints[1:])
 #sizes = diff(endpoints)
 if func is None:
 return np.vstack(tuple(self.buffer_fetch(start, end) for start, end in zendpoints))
 else:
 if func.__code__.co_argcount==1:
 for start, end in zendpoints:
 func(self.buffer_fetch(start, end))
 else:
 runningval = 0
 for start, end in zendpoints:
 runningval = func(self.buffer_fetch(start, end), runningval)
 return runningval

 def buffer_init(self):
 Bufferable.buffer_init(self)
 if isinstance(self.source, Bufferable):
 self.source.buffer_init()
 else:
 for s in self.source:
 s.buffer_init()
 self.next_sample = 0

 def buffer_apply(self, input):
 raise NotImplementedError

 def buffer_fetch_next(self, samples):
 start = self.next_sample
 self.next_sample += samples
 end = start+samples
 input = self.source.buffer_fetch(start, end)
 return self.buffer_apply(input)

 def __add__ (self, other):
 if isinstance(other, Bufferable):
 return SumFilterbank((self, other))
 else:
 func = lambda x: other+x
 return FunctionFilterbank(self, func)
 __radd__ = __add__

 def __sub__ (self, other):
 if isinstance(other, Bufferable):
 return SumFilterbank((self, other), (1, -1))
 else:
 func = lambda x: x-other
 return FunctionFilterbank(self, func)

 def __rsub__ (self, other):
 # Note that __rsub__ should return other-self
 if isinstance(other, Bufferable):
 return SumFilterbank((self, other), (-1, 1))
 else:
 func = lambda x: other-x
 return FunctionFilterbank(self, func)

 def __mul__(self, other):
 if isinstance(other, Bufferable):
 func = lambda x, y: x*y
 return FunctionFilterbank((self, other), func)
 else:
 func = lambda x: x*other
 return FunctionFilterbank(self, func)
 __rmul__ = __mul__

 def __div__(self, other):
 if isinstance(other, Bufferable):
 func = lambda x, y: x/y
 return FunctionFilterbank((self, other), func)
 else:
 func = lambda x: x/other
 return FunctionFilterbank(self, func)

 def __rdiv__(self, other):
 # Note __rdiv__ returns other/self
 if isinstance(other, Bufferable):
 func = lambda x, y: x/y
 return FunctionFilterbank((other, self), func)
 else:
 func = lambda x: other/x
 return FunctionFilterbank(self, func)

[docs]class RestructureFilterbank(Filterbank):
 '''
 Filterbank used to restructure channels, including repeating and interleaving.

 Standard forms of usage:

 Repeat mono source N times::

 RestructureFilterbank(source, N)

 For a stereo source, N copies of the left channel followed by N copies of
 the right channel::

 RestructureFilterbank(source, N)

 For a stereo source, N copies of the channels tiled as LRLRLR...LR::

 RestructureFilterbank(source, numtile=N)

 For two stereo sources AB and CD, join them together in serial to form the
 output channels in order ABCD::

 RestructureFilterbank((AB, CD))

 For two stereo sources AB and CD, join them together interleaved to form
 the output channels in order ACBD::

 RestructureFilterbank((AB, CD), type='interleave')

 These arguments can also be combined together, for example to AB and CD
 into output channels AABBCCDDAABBCCDDAABBCCDD::

 RestructureFilterbank((AB, CD), 2, 'serial', 3)

 The three arguments are the number of repeats before joining, the joining
 type ('serial' or 'interleave') and the number of tilings after joining.
 See below for details.

 Initialise arguments:

 ``source``
 Input source or list of sources.
 ``numrepeat=1``
 Number of times each channel in each of the input sources is repeated
 before mixing the source channels. For example, with repeat=2 an input
 source with channels ``AB`` will be repeated to form ``AABB``
 ``type='serial'``
 The method for joining the source channels, the options are ``'serial'``
 to join the channels in series, or ``'interleave'`` to interleave them.
 In the case of ``'interleave'``, each source must have the same number
 of channels. An example of serial, if the input sources are ``abc``
 and ``def`` the output would be ``abcdef``. For interleave, the output
 would be ``adbecf``.
 ``numtile=1``
 The number of times the joined channels are tiled, so if the joined
 channels are ``ABC`` and ``numtile=3`` the output will be ``ABCABCABC``.
 ``indexmapping=None``
 Instead of specifying the restructuring via ``numrepeat, type, numtile``
 you can directly give the mapping of input indices to output indices.
 So for a single stereo source input, ``indexmapping=[1,0]`` would
 reverse left and right. Similarly, with two mono sources,
 ``indexmapping=[1,0]`` would have channel 0 of the output correspond to
 source 1 and channel 1 of the output corresponding to source 0. This is
 because the indices are counted in order of channels starting from the
 first source and continuing to the last. For example, suppose you had
 two sources, each consisting of a stereo sound, say source 0 was
 ``AB`` and source 1 was ``CD`` then ``indexmapping=[1, 0, 3, 2]`` would
 swap the left and right of each source, but leave the order of the
 sources the same, i.e. the output would be ``BADC``.
 '''
 def __init__(self, source, numrepeat=1, type='serial', numtile=1,
 indexmapping=None):
 self._has_been_optimised = False
 self._reinit(source, numrepeat, type, numtile, indexmapping)

 def _do_reinit(self):
 self._reinit(*self._original_init_arguments)
 if self._has_been_optimised:
 self._optimisation_target._do_reinit()

 def _reinit(self, source, numrepeat, type, numtile, indexmapping):
 self._original_init_arguments = (source, numrepeat, type, numtile, indexmapping)
 if isinstance(source, Bufferable):
 source = (source,)
 if indexmapping is None:
 nchannels = np.array([s.nchannels for s in source])
 idx = np.hstack(([0], np.cumsum(nchannels)))
 I = [np.arange(start, stop) for start, stop in zip(idx[:-1], idx[1:])]
 I = tuple(np.repeat(i, numrepeat) for i in I)
 if type=='serial':
 indexmapping = np.hstack(I)
 elif type=='interleave':
 if len(np.unique(nchannels))!=1:
 raise ValueError('For interleaving, all inputs must have an equal number of channels.')
 I0 = len(I[0])
 indexmapping = np.zeros(I0*len(I), dtype=int)
 for j, i in enumerate(I):
 indexmapping[j::len(I)] = i
 else:
 raise ValueError('Type must be "serial" or "interleave"')
 indexmapping = np.tile(indexmapping, numtile)
 if not isinstance(indexmapping, np.ndarray):
 indexmapping = np.array(indexmapping, dtype=int)
 # optimisation to reduce multiple RestructureFilterbanks into a single
 # one, by collating the sources and reconstructing the indexmapping
 # from the individual indexmappings
 if all(isinstance(s, RestructureFilterbank) for s in source):
 newsource = ()
 newsourcesizes = ()
 for s in source:
 s._has_been_optimised = True
 s._optimisation_target = self
 newsource += s.source
 inputsourcesize = sum(inpsource.nchannels for inpsource in s.source)
 newsourcesizes += (inputsourcesize,)
 newsourcesizes = np.array(newsourcesizes)
 newsourceoffsets = np.hstack((0, np.cumsum(newsourcesizes)))
 new_indexmapping = np.zeros_like(indexmapping)
 sourcesizes = np.array(tuple(s.nchannels for s in source))
 sourceoffsets = np.hstack((0, np.cumsum(sourcesizes)))
 # gives the index of the source of each element of indexmapping
 sourceindices = np.digitize(indexmapping, np.cumsum(sourcesizes))
 for i in range(len(indexmapping)):
 source_index = sourceindices[i]
 s = source[source_index]
 relative_index = indexmapping[i]-sourceoffsets[source_index]
 source_relative_index = s.indexmapping[relative_index]
 new_index = source_relative_index+newsourceoffsets[source_index]
 new_indexmapping[i] = new_index
 source = newsource
 indexmapping = new_indexmapping

 self.indexmapping = indexmapping
 self.nchannels = len(indexmapping)
 self.samplerate = source[0].samplerate
 for s in source:
 if int(s.samplerate)!=int(self.samplerate):
 raise ValueError('All sources must have the same samplerate.')
 self._source = source

 def buffer_fetch_next(self, samples):
 start = self.next_sample
 self.next_sample += samples
 end = start+samples
 inputs = tuple(s.buffer_fetch(start, end) for s in self.source)
 input = np.hstack(inputs)
 input = input[:, self.indexmapping]
 return input

 def change_source(self, source):
 if not hasattr(self, '_source') or self._source is None:
 self._source = source
 return
 oldsource, numrepeat, type, numtile, indexmapping = self._original_init_arguments
 self._original_init_arguments = source, numrepeat, type, numtile, indexmapping
 self._do_reinit()

self._reinit(source, numrepeat, type, numtile, indexmapping)
if self._has_been_optimised:
target = self._optimisation_target
target._reinit(*target._original_init_arguments)

[docs]class Repeat(RestructureFilterbank):
 '''
 Filterbank that repeats each channel from its input, e.g. with 3 repeats
 channels ABC would map to AAABBBCCC.
 '''
 def __init__(self, source, numrepeat):
 RestructureFilterbank.__init__(self, source, numrepeat)

[docs]class Tile(RestructureFilterbank):
 '''
 Filterbank that tiles the channels from its input, e.g. with 3 tiles
 channels ABC would map to ABCABCABC.
 '''
 def __init__(self, source, numtile):
 RestructureFilterbank.__init__(self, source, numtile=numtile)

[docs]class Join(RestructureFilterbank):
 '''
 Filterbank that joins the channels of its inputs in series, e.g. with two
 input sources with channels AB and CD respectively, the output would have
 channels ABCD. You can initialise with multiple sources separated by
 commas, or by passing a list of sources.
 '''
 def __init__(self, *sources):
 source = []
 for s in sources:
 if isinstance(s, Bufferable):
 source.append(s)
 else:
 source.extend(s)
 RestructureFilterbank.__init__(self, tuple(source), type='serial')

[docs]class Interleave(RestructureFilterbank):
 '''
 Filterbank that interleaves the channels of its inputs, e.g. with two
 input sources with channels AB and CD respectively, the output would have
 channels ACBD. You can initialise with multiple sources separated by
 commas, or by passing a list of sources.
 '''
 def __init__(self, *sources):
 source = []
 for s in sources:
 if isinstance(s, Bufferable):
 source.append(s)
 else:
 source.extend(s)
 RestructureFilterbank.__init__(self, tuple(source), type='interleave')

[docs]class FunctionFilterbank(Filterbank):
 '''
 Filterbank that just applies a given function. The function should take
 as many arguments as there are sources.

 For example, to half-wave rectify inputs::

 FunctionFilterbank(source, lambda x: clip(x, 0, Inf))

 The syntax ``lambda x: clip(x, 0, Inf)`` defines a function object that
 takes a single argument ``x`` and returns ``clip(x, 0, Inf)``. The numpy
 function ``clip(x, low, high)`` returns the values of ``x`` clipped between
 ``low`` and ``high`` (so if ``x<low`` it returns ``low``, if ``x>high`` it
 returns ``high``, otherwise it returns ``x``). The symbol ``Inf`` means
 infinity, i.e. no clipping of positive values.

 Technical details

 Note that functions should operate on arrays, in particular on 2D buffered
 segments, which are arrays of shape ``(bufsize, nchannels)``. Typically,
 most standard functions from numpy will work element-wise.

 If you want a filterbank that changes the shape of the input (e.g. changes
 the number of channels), set the ``nchannels`` keyword argument to the
 number of output channels.
 '''
 def __init__(self, source, func, nchannels=None,**params):
 if isinstance(source, Bufferable):
 source = (source,)
 Filterbank.__init__(self, source)
 self.func = func
 if nchannels is not None:
 self.nchannels = nchannels
 self.params = params

 def buffer_fetch_next(self, samples):
 start = self.cached_buffer_end
 end = start+samples
 inputs = tuple(s.buffer_fetch(start, end) for s in self.source)
print inputs,self.params
 return self.func(*inputs,**self.params)

[docs]class SumFilterbank(FunctionFilterbank):
 '''
 Sum filterbanks together with given weight vectors.

 For example, to take the sum of two filterbanks::

 SumFilterbank((fb1, fb2))

 To take the difference::

 SumFilterbank((fb1, fb2), (1, -1))
 '''
 def __init__(self, source, weights=None):
 if weights is None:
 weights = np.ones(len(source))
 self.weights = weights
 func = lambda *inputs: sum(input*w for input, w in zip(inputs, weights))
 FunctionFilterbank.__init__(self, source, func)

[docs]class DoNothingFilterbank(Filterbank):
 '''
 Filterbank that does nothing to its input.

 Useful for removing a set of filters without having to rewrite your code.
 Can also be used for simply writing compound derived classes. For example,
 if you want a compound Filterbank that does AFilterbank and then
 BFilterbank, but you want to encapsulate that into a single class, you
 could do::

 class ABFilterbank(DoNothingFilterbank):
 def __init__(self, source):
 a = AFilterbank(source)
 b = BFilterbank(a)
 DoNothingFilterbank.__init__(self, b)

 However, a more general way of writing compound filterbanks is to use
 :class:`CombinedFilterbank`.
 '''
 def buffer_apply(self, input):
 return input

[docs]class ControlFilterbank(Filterbank):
 '''
 Filterbank that can be used for controlling behaviour at runtime

 Typically, this class is used to implement a control path in an auditory
 model, modifying some filterbank parameters based on the output of other
 filterbanks (or the same ones).

 The controller has a set of input filterbanks whose output values are used
 to modify a set of output filterbanks. The update is done by a user specified
 function or class which is passed these output values. The controller should
 be inserted as the last bank in a chain.

 Initialisation arguments:

 ``source``
 The source filterbank, the values from this are used unmodified as the
 output of this filterbank.
 ``inputs``
 Either a single filterbank, or sequence of filterbanks which are used
 as inputs to the ``updater``.
 ``targets``
 The filterbank or sequence of filterbanks that are modified by the
 updater.
 ``updater``
 The function or class which does the updating, see below.
 ``max_interval``
 If specified, ensures that the updater is called at least as often
 as this interval (but it may be called more often). Can be specified
 as a time or a number of samples.

 The updater

 The ``updater`` argument can be either a function or class instance. If it
 is a function, it should have a form like::

 # A single input
 def updater(input):
 ...

 # Two inputs
 def updater(input1, input2):
 ...

 # Arbitrary number of inputs
 def updater(*inputs):
 ...

 Each argument ``input`` to the function is a numpy array of shape
 ``(numsamples, numchannels)`` where ``numsamples`` is the number of samples
 just computed, and ``numchannels`` is the number of channels in the
 corresponding filterbank. The function is not restricted in what it can
 do with these inputs.

 Functions can be used to implement relatively simple controllers, but for
 more complicated situations you may want to maintain some state variables
 for example, and in this case you can use a class. The object ``updater``
 should be an instance of a class that defines the ``__call__`` method
 (with the same syntax as above for functions). In addition, you can
 define a reinitialisation method ``reinit()`` which will be called when
 the ``buffer_init()`` method is called on the filterbank, although this is
 entirely optional.

 Example

 The following will do a simple form of gain control, where the gain
 parameter will drift exponentially towards target_rms/rms with a given time
 constant::

 # This class implements the gain (see Filterbank for details)
 class GainFilterbank(Filterbank):
 def __init__(self, source, gain=1.0):
 Filterbank.__init__(self, source)
 self.gain = gain
 def buffer_apply(self, input):
 return self.gain*input

 # This is the class for the updater object
 class GainController(object):
 def __init__(self, target, target_rms, time_constant):
 self.target = target
 self.target_rms = target_rms
 self.time_constant = time_constant
 def reinit(self):
 self.sumsquare = 0
 self.numsamples = 0
 def __call__(self, input):
 T = input.shape[0]/self.target.samplerate
 self.sumsquare += sum(input**2)
 self.numsamples += input.size
 rms = sqrt(self.sumsquare/self.numsamples)
 g = self.target.gain
 g_tgt = self.target_rms/rms
 tau = self.time_constant
 self.target.gain = g_tgt+exp(-T/tau)*(g-g_tgt)

 And an example of using this with an input ``source``, a target RMS of 0.2
 and a time constant of 50 ms, updating every 10 ms::

 gain_fb = GainFilterbank(source)
 updater = GainController(gain_fb, 0.2, 50*ms)
 control = ControlFilterbank(gain_fb, source, gain_fb, updater, 10*ms)
 '''
 def __init__(self, source, inputs, targets, updater, max_interval=None):
 Filterbank.__init__(self, source)
 if not isinstance(inputs, (list, tuple)):
 inputs = [inputs]
 if not isinstance(targets, (list, tuple)):
 targets = [targets]
 self.inputs = inputs
 self.updater = updater
 if max_interval is not None:
 if not isinstance(max_interval, int):
 max_interval = int(max_interval*source.samplerate)
 for x in inputs+targets:
 x.maximum_buffer_size = max_interval
 self.maximum_buffer_size = max_interval

 def buffer_init(self):
 Filterbank.buffer_init(self)
 if hasattr(self.updater, 'reinit'):
 self.updater.reinit()

 def buffer_fetch_next(self, samples):
 start = self.next_sample
 self.next_sample += samples
 end = start+samples
 source_input = self.source.buffer_fetch(start, end)
 input_buffers = [x.buffer_fetch(start, end) for x in self.inputs]
 self.updater(*input_buffers)
 return source_input

[docs]class CombinedFilterbank(Filterbank):
 '''
 Filterbank that encapsulates a chain of filterbanks internally.

 This class should mostly be used by people writing extensions to Brian hears
 rather than by users directly. The purpose is to take an existing chain of
 filterbanks and wrap them up so they appear to the user as a single
 filterbank which can be used exactly as any other filterbank.

 In order to do this, derive from this class and in your initialisation
 follow this pattern::

 class RectifiedGammatone(CombinedFilterbank):
 def __init__(self, source, cf):
 CombinedFilterbank.__init__(self, source)
 source = self.get_modified_source()
 # At this point, insert your chain of filterbanks acting on
 # the modified source object
 gfb = Gammatone(source, cf)
 rectified = FunctionFilterbank(gfb,
 lambda input: clip(input, 0, Inf))
 # Finally, set the output filterbank to be the last in your chain
 self.set_output(fb)

 This combination of a :class:`Gammatone` and a rectification via a
 :class:`FunctionFilterbank` can now be used as a single filterbank, for
 example::

 x = whitenoise(100*ms)
 fb = RectifiedGammatone(x, [1*kHz, 1.5*kHz])
 y = fb.process()

 Details

 The reason for the ``get_modified_source()`` call is that the source
 attribute of a filterbank can be changed after creation. The modified source
 provides a buffer (in fact, a :class:`DoNothingFilterbank`) so that the
 input to the chain of filters defined by the derived class doesn't need to
 be changed.
 '''
 def __init__(self, source):
 Filterbank.__init__(self, source)

 def get_duration(self):
 if hasattr(self, '_duration'):
 return self._duration
 else:
 return max(Filterbank.get_duration(self), self.output.duration)

 source = property(fget=lambda self:self._source,
 fset=lambda self, source:self.change_source(source))

 def change_source(self, source):
 Filterbank.change_source(self, source)
 if hasattr(self, '_modified_source'):
 self._modified_source.source = source

 def get_modified_source(self):
 self._modified_source = DoNothingFilterbank(self.source)
 return self._modified_source

 def set_output(self, output):
 self.output = output
 self.nchannels = output.nchannels

 def buffer_init(self):
 Filterbank.buffer_init(self)
 self.output.buffer_init()

 def buffer_fetch(self, start, end):
 return self.output.buffer_fetch(start, end)

 Source code for brian2hears.filtering.filterbankgroup

import weakref

from brian2 import NeuronGroup, Clock, NetworkOperation, get_device, second
from brian2.devices.device import RuntimeDevice
from brian2.core.functions import timestep
from brian2.units.fundamentalunits import have_same_dimensions, DimensionMismatchError, DIMENSIONLESS

__all__ = ['FilterbankGroup']

class ApplyFilterbank(object):
 def __init__(self, group, targetvar, filterbank, buffersize):
 self.group = weakref.ref(group)
 self.targetvar = targetvar
 self.filterbank = weakref.proxy(filterbank)
 self.buffersize = buffersize
 self.dt = 1/filterbank.samplerate
 self.buffer_start = -2*buffersize
 self.buffer_end = -buffersize
 self.buffer = None

 def __call__(self, t):
 if not hasattr(self, 'target_variable'):
 self.target_variable = weakref.ref(self.group().variables[self.targetvar])
 i = timestep(t, self.dt)
 if not (self.buffer_start<=i<self.buffer_end):
 if i==0:
 self.filterbank.buffer_init()
 self.buffer_start = i
 self.buffer_end = self.buffer_start+self.buffersize
 self.buffer = self.filterbank.buffer_fetch(self.buffer_start, self.buffer_end)
 self.target_variable().set_value(self.buffer[i-self.buffer_start, :])

[docs]class FilterbankGroup(NeuronGroup):
 '''
 Allows a Filterbank object to be used as a NeuronGroup

 Initialised as a standard `~brian2.groups.neurongroup.NeuronGroup` object,
 but with two additional arguments at the beginning, and no ``N`` (number of
 neurons) argument. The number of neurons in the group will be the number of
 channels in the filterbank.

 ``filterbank``
 The Filterbank object to be used by the group. In fact, any `.Bufferable`
 object can be used.
 ``targetvar``
 The target variable to put the filterbank output into.

 One additional keyword is available beyond that of
 `~brian2.groups.neurongroup.NeuronGroup`:

 ``buffersize=32``
 The size of the buffered segments to fetch each time. The efficiency
 depends on this in an unpredictable way, larger values mean more time
 spent in optimised code, but are worse for the cache. In many cases,
 the default value is a good tradeoff. Values can be given as a number
 of samples, or a length of time in seconds.

 Note that if you specify your own `~brian2.core.clocks.Clock`, it should
 have 1/dt=samplerate.
 '''

 def __init__(self, filterbank, targetvar, *args, **kwds):
 # Make sure we're not in standalone mode (which won't work)
 if not isinstance(get_device(), RuntimeDevice):
 raise RuntimeError("Cannot use standalone mode with brian2hears")

 self.targetvar = targetvar
 self.filterbank = filterbank
 filterbank.buffer_init()

 # Sanitize the clock - does it have the right dt value?
 if 'clock' in kwds:
 if int(1/kwds['clock'].dt)!=int(filterbank.samplerate):
 raise ValueError('Clock should have 1/dt=samplerate')
 elif 'dt' in kwds:
 if int(1 / kwds['dt']) != int(filterbank.samplerate):
 raise ValueError('Require 1/dt=samplerate')
 else:
 kwds['dt'] = 1/filterbank.samplerate

 buffersize = kwds.pop('buffersize', 32)
 if not isinstance(buffersize, int):
 if not have_same_dimensions(buffersize, second):
 raise DimensionMismatchError("buffersize argument should be an integer or in seconds")
 buffersize = int(buffersize*filterbank.samplerate)

 self.buffersize = buffersize

 self.apply_filterbank = ApplyFilterbank(self, targetvar, filterbank, buffersize)

 NeuronGroup.__init__(self, filterbank.nchannels, *args, **kwds)

 if self.variables[targetvar].dim is not DIMENSIONLESS:
 raise DimensionMismatchError("Target variable must be dimensionless")

 apply_filterbank_output = NetworkOperation(self.apply_filterbank.__call__, when='start', clock=self.clock)
 self.contained_objects.append(apply_filterbank_output)

 Source code for brian2hears.filtering.filterbanklibrary

from builtins import range

import numpy as np
from scipy import signal

from .linearfilterbank import *
from .firfilterbank import *

from brian2 import second, DimensionMismatchError

__all__ = ['Cascade',
 'Gammatone',
 'ApproximateGammatone',
 'LogGammachirp',
 'LinearGammachirp',
 'LinearGaborchirp',
 'IIRFilterbank',
 'Butterworth',
 'AsymmetricCompensation',
 'LowPass',
 'asymmetric_compensation_coeffs',
]

[docs]class Gammatone(LinearFilterbank):
 '''
 Bank of gammatone filters.

 They are implemented as cascades of four 2nd-order IIR filters (this
 8th-order digital filter corresponds to a 4th-order gammatone filter).

 The approximated impulse response :math:`\\mathrm{IR}` is defined as follow
 :math:`\\mathrm{IR}(t)=t^3\\exp(-2\\pi b \\mathrm{ERB}(f)t)\\cos(2\\pi f t)`
 where :math:`\\mathrm{ERB}(f)=24.7+0.108 f` [Hz] is the equivalent
 rectangular bandwidth of the filter centered at :math:`f`.

 It comes from Slaney's exact gammatone implementation (Slaney, M., 1993,
 "An Efficient Implementation of the Patterson-Holdsworth
 Auditory Filter Bank". Apple Computer Technical Report #35). The code is
 based on
 `Slaney's Matlab implementation <https://engineering.purdue.edu/~malcolm/interval/1998-010/>`__.

 Initialised with arguments:

 ``source``
 Source of the filterbank.

 ``cf``
 List or array of center frequencies.

 ``b=1.019``
 parameter which determines the bandwidth of the filters (and
 reciprocally the duration of its impulse response). In particular, the
 bandwidth = b.ERB(cf), where ERB(cf) is the equivalent bandwidth at
 frequency ``cf``. The default value of ``b`` to a best fit
 (Patterson et al., 1992). ``b`` can either be a scalar and will be the
 same for every channel or an array of the same length as ``cf``.

 ``erb_order=1``, ``ear_Q=9.26449``, ``min_bw=24.7``
 Parameters used to compute the ERB bandwidth.
 :math:`\\mathrm{ERB} = ((\mathrm{cf}/\mathrm{ear_Q})^{\\mathrm{erb}_\\mathrm{order}} + \\mathrm{min_bw}^{\\mathrm{erb}_\\mathrm{order}})^{(1/\\mathrm{erb}_\\mathrm{order})}`.
 Their default values are the ones recommended in
 Glasberg and Moore, 1990.

 ``cascade=None``
 Specify 1 or 2 to use a cascade of 1 or 2 order 8 or 4 filters instead
 of 4 2nd order filters. Note that this is more efficient but may
 induce numerical stability issues.
 '''

 def __init__(self, source, cf, b=1.019, erb_order=1, ear_Q=9.26449,
 min_bw=24.7, cascade=None):
 cf = np.atleast_1d(np.asarray(cf))
 self.cf = cf
 self.samplerate = source.samplerate
 T = float(1/self.samplerate)
 self.b,self.erb_order,self.EarQ,self.min_bw=b,erb_order,ear_Q,min_bw
 erb = ((cf/ear_Q)**erb_order + min_bw**erb_order)**(1/erb_order)
 B = b*2*np.pi*erb
B = 2*np.pi*b

 A0 = T
 A2 = 0
 B0 = 1
 B1 = -2*np.cos(2*cf*np.pi*T)/np.exp(B*T)
 B2 = np.exp(-2*B*T)

 A11 = -(2*T*np.cos(2*cf*np.pi*T)/np.exp(B*T) + 2*np.sqrt(3+2**1.5)*T*np.sin(2*cf*np.pi*T) / \

 np.exp(B*T))/2
 A12=-(2*T*np.cos(2*cf*np.pi*T)/np.exp(B*T)-2*np.sqrt(3+2**1.5)*T*np.sin(2*cf*np.pi*T)/\
 np.exp(B*T))/2
 A13=-(2*T*np.cos(2*cf*np.pi*T)/np.exp(B*T)+2*np.sqrt(3-2**1.5)*T*np.sin(2*cf*np.pi*T)/\
 np.exp(B*T))/2
 A14=-(2*T*np.cos(2*cf*np.pi*T)/np.exp(B*T)-2*np.sqrt(3-2**1.5)*T*np.sin(2*cf*np.pi*T)/\
 np.exp(B*T))/2

 i=1j
 gain=abs((-2*np.exp(4*i*cf*np.pi*T)*T+\
 2*np.exp(-(B*T)+2*i*cf*np.pi*T)*T*\
 (np.cos(2*cf*np.pi*T)-np.sqrt(3-2**(3./2))*\
 np.sin(2*cf*np.pi*T)))*\
 (-2*np.exp(4*i*cf*np.pi*T)*T+\
 2*np.exp(-(B*T)+2*i*cf*np.pi*T)*T*\
 (np.cos(2*cf*np.pi*T)+np.sqrt(3-2**(3./2))*\
 np.sin(2*cf*np.pi*T)))*\
 (-2*np.exp(4*i*cf*np.pi*T)*T+\
 2*np.exp(-(B*T)+2*i*cf*np.pi*T)*T*\
 (np.cos(2*cf*np.pi*T)-\
 np.sqrt(3+2**(3./2))*np.sin(2*cf*np.pi*T)))*\
 (-2*np.exp(4*i*cf*np.pi*T)*T+2*np.exp(-(B*T)+2*i*cf*np.pi*T)*T*\
 (np.cos(2*cf*np.pi*T)+np.sqrt(3+2**(3./2))*np.sin(2*cf*np.pi*T)))/\
 (-2/np.exp(2*B*T)-2*np.exp(4*i*cf*np.pi*T)+\
 2*(1+np.exp(4*i*cf*np.pi*T))/np.exp(B*T))**4)

 allfilts=np.ones(len(cf))

 self.A0, self.A11, self.A12, self.A13, self.A14, self.A2, self.B0, self.B1, self.B2, self.gain=\
 A0*allfilts, A11, A12, A13, A14, A2*allfilts, B0*allfilts, B1, B2, gain

 self.filt_a=np.dstack((np.array([np.ones(len(cf)), B1, B2]).T,)*4)
 self.filt_b=np.dstack((np.array([A0/gain, A11/gain, A2/gain]).T,
 np.array([A0*np.ones(len(cf)), A12, np.zeros(len(cf))]).T,
 np.array([A0*np.ones(len(cf)), A13, np.zeros(len(cf))]).T,
 np.array([A0*np.ones(len(cf)), A14, np.zeros(len(cf))]).T))

 LinearFilterbank.__init__(self, source, self.filt_b, self.filt_a)
 if cascade is not None:
 self.decascade(cascade)

[docs]class ApproximateGammatone(LinearFilterbank):
 r'''
 Bank of approximate gammatone filters implemented as a cascade of ``order`` IIR gammatone filters.

 The filter is derived from the sampled version of the complex analog
 gammatone impulse response
 :math:`g_{\gamma}(t)=t^{\gamma-1} (\lambda e^{i \eta t})^{\gamma}`
 where :math:`\gamma` corresponds to ``order``, :math:`\eta` defines the
 oscillation frequency ``cf``, and :math:`\lambda` defines the bandwidth
 parameter.

 The design is based on the Hohmann implementation as described in
 Hohmann, V., 2002, "Frequency analysis and synthesis using a Gammatone
 filterbank", Acta Acustica United with Acustica. The code is based on the
 Matlab gammatone implementation from
 `Meddis' toolbox <https://github.com/rmeddis/MAP/>`__.

 Initialised with arguments:

 ``source``
 Source of the filterbank.

 ``cf``
 List or array of center frequencies.

 ``bandwidth``
 List or array of filters bandwidth corresponding, one for each cf.

 ``order=4``
 The number of 1st-order gammatone filters put in cascade, and therefore
 the order the resulting gammatone filters.
 '''

 def __init__(self, source, cf, bandwidth,order=4):
 cf = np.asarray(np.atleast_1d(cf))
 bandwidth = np.asarray(np.atleast_1d(bandwidth))
 self.cf = cf
 self.samplerate = source.samplerate
 dt = float(1/self.samplerate)
 phi = 2 * np.pi * bandwidth * dt
 theta = 2 * np.pi * cf * dt
 cos_theta = np.cos(theta)
 sin_theta = np.sin(theta)
 alpha = -np.exp(-phi) * cos_theta
 b0 = np.ones(len(cf))
 b1 = 2 * alpha
 b2 = np.exp(-2 * phi)
 z1 = (1 + alpha * cos_theta) - (alpha * sin_theta) * 1j
 z2 = (1 + b1 * cos_theta) - (b1 * sin_theta) * 1j
 z3 = (b2 * np.cos(2 * theta)) - (b2 * np.sin(2 * theta)) * 1j
 tf = (z2 + z3) / z1
 a0 = abs(tf)
 a1 = alpha * a0
 # we apply the same filters order times so we just duplicate them in the 3rd axis for the parallel_lfilter_step command
 self.filt_a = np.dstack((np.array([b0, b1, b2]).T,)*order)
 self.filt_b = np.dstack((np.array([a0, a1, np.zeros(len(cf))]).T,)*order)
 self.order = order

 LinearFilterbank.__init__(self,source, self.filt_b, self.filt_a)

[docs]class LogGammachirp(LinearFilterbank):
 r'''
 Bank of gammachirp filters with a logarithmic frequency sweep.

 The approximated impulse response :math:`\mathrm{IR}` is defined as follows:
 :math:`\mathrm{IR}(t)=t^3e^{-2\pi b \mathrm{ERB}(f)t}\cos(2\pi (f t +c\cdot\ln(t))`
 where :math:`\mathrm{ERB}(f)=24.7+0.108 f` [Hz] is the equivalent
 rectangular bandwidth of the filter centered at :math:`f`.

 The implementation is a cascade of 4 2nd-order IIR gammatone filters
 followed by a cascade of ncascades 2nd-order asymmetric compensation filters
 as introduced in Unoki et al. 2001, "Improvement of an IIR asymmetric
 compensation gammachirp filter".

 Initialisation parameters:

 ``source``
 Source sound or filterbank.

 ``f``
 List or array of the sweep ending frequencies
 (:math:`f_{\mathrm{instantaneous}}=f+c/t`).

 ``b=1.019``
 Parameters which determine the duration of the impulse response.
 ``b`` can either be a scalar and will be the same for every channel or
 an array with the same length as ``f``.

 ``c=1``
 The glide slope (or sweep rate) given in Hz/second. The trajectory of
 the instantaneous frequency towards f is an upchirp when c<0 and a
 downchirp when c>0.
 ``c`` can either be a scalar and will be the same for every channel or
 an array with the same length as ``f``.

 ``ncascades=4``
 Number of times the asymmetric compensation filter is put in cascade.
 The default value comes from Unoki et al. 2001.
 '''

 def __init__(self, source, f,b=1.019,c=1,ncascades=4):
 f = np.atleast_1d(np.asarray(f))
 self.f = f
 self.samplerate= source.samplerate

 self.c=c
 self.b=b
 gammatone = Gammatone(source, f, b)

 self.gammatone_filt_b=gammatone.filt_b
 self.gammatone_filt_a=gammatone.filt_a

 ERBw=24.7*(4.37e-3*f+1.)

 p0=2
 p1=1.7818*(1-0.0791*b)*(1-0.1655*abs(c))
 p2=0.5689*(1-0.1620*b)*(1-0.0857*abs(c))
 p3=0.2523*(1-0.0244*b)*(1+0.0574*abs(c))
 p4=1.0724

 self.asymmetric_filt_b=np.zeros((len(f),3, ncascades))
 self.asymmetric_filt_a=np.zeros((len(f),3, ncascades))

 self.asymmetric_filt_b, self.asymmetric_filt_a = asymmetric_compensation_coeffs(self.samplerate,
 f,
 self.asymmetric_filt_b,
 self.asymmetric_filt_a,
 b, c, p0, p1, p2, p3, p4)

 #concatenate the gammatone filter coefficients so that everything is in cascade in each frequency channel
 self.filt_b = np.concatenate([self.gammatone_filt_b,
 self.asymmetric_filt_b], axis=2)
 self.filt_a = np.concatenate([self.gammatone_filt_a,
 self.asymmetric_filt_a], axis=2)

 LinearFilterbank.__init__(self, source, self.filt_b,self.filt_a)

[docs]class LinearGammachirp(FIRFilterbank):
 r'''
 Bank of gammachirp filters with linear frequency sweeps and gamma envelope
 as described in Wagner et al. 2009, "Auditory responses in the barn owl's
 nucleus laminaris to clicks: impulse response and signal analysis of
 neurophonic potential", J. Neurophysiol.

 The impulse response :math:`\mathrm{IR}` is defined as follow
 :math:`\mathrm{IR}(t)=t^3e^{-t/\sigma}\cos(2\pi (f t +c/2 t^2)+\phi)`
 where :math:`\sigma` corresponds to ``time_constant`` and :math:`\phi` to
 ``phase`` (see definition of parameters).

 Those filters are implemented as FIR filters using truncated time
 representations of gammachirp functions as the impulse response. The impulse
 responses, which need to have the same length for every channel, have a
 duration of 15 times the biggest time constant. The length of the impulse
 response is therefore ``15*max(time_constant)*sampling_rate``. The impulse
 responses are normalized with respect to the transmitted power, i.e.
 the rms of the filter taps is 1.

 Initialisation parameters:

 ``source``
 Source sound or filterbank.

 ``f``
 List or array of the sweep starting frequencies
 (:math:`f_{\mathrm{instantaneous}}=f+ct`).

 ``time_constant``
 Determines the duration of the envelope and consequently the length of
 the impulse response.

 ``c=1``
 The glide slope (or sweep rate) given in Hz/second. The time-dependent
 instantaneous frequency is ``f+c*t`` and is therefore going upward when
 c>0 and downward when c<0. ``c`` can either be a scalar and will be the
 same for every channel or an array with the same length as ``f``.

 ``phase=0``
 Phase shift of the carrier.

 Has attributes:

 ``length_impulse_response``
 Number of samples in the impulse responses.

 ``impulse_response``
 Array of shape ``(nchannels, length_impulse_response)`` with each row
 being an impulse response for the corresponding channel.
 '''
 def __init__(self, source, f, time_constant, c=1, phase=0):

 self.f=f=np.asarray(np.atleast_1d(f))
 self.c=c=np.atleast_1d(c)
 self.phase=phase=np.atleast_1d(phase)
 self.time_constant=time_constant=np.asarray(np.atleast_1d(time_constant))
 if len(time_constant)==1:
 time_constant=time_constant*np.ones(len(f))
 if len(c)==1:
 c=c*np.ones(len(f))
 if len(phase)==1:
 phase=phase*np.ones(len(f))
 self.samplerate= source.samplerate

 Tcst_max=max(time_constant)

 t_start=float(-Tcst_max*3*second)
 t=np.arange(t_start,-4*t_start,float(1./self.samplerate))

 self.impulse_response=np.zeros((len(f),len(t)))

 for ich in range(len(f)):
 env=(t-t_start)**3*np.exp(-(t-t_start)/time_constant[ich])
 self.impulse_response[ich,:]=env*np.cos(2*np.pi*(f[ich]*t+c[ich]/2*t**2)+phase[ich])
self.impulse_response[ich,:]=self.impulse_response[ich,:]/np.sqrt(sum(self.impulse_response[ich,:]**2))
 self.impulse_response[ich,:]=self.impulse_response[ich,:]/np.sum(abs(self.impulse_response[ich,:]))

 FIRFilterbank.__init__(self,source, self.impulse_response)

[docs]class LinearGaborchirp(FIRFilterbank):
 r'''
 Bank of gammachirp filters with linear frequency sweeps and gaussian envelope
 as described in Wagner et al. 2009, "Auditory responses in the barn owl's
 nucleus laminaris to clicks: impulse response and signal analysis of
 neurophonic potential", J. Neurophysiol.

 The impulse response :math:`\mathrm{IR}` is defined as follows:
 :math:`\mathrm{IR}(t)=e^{-t/2\sigma^2}\cos(2\pi (f t +c/2 t^2)+\phi)`,
 where :math:`\sigma` corresponds to ``time_constant`` and :math:`\phi` to
 ``phase`` (see definition of parameters).

 These filters are implemented as FIR filters using truncated time
 representations of gammachirp functions as the impulse response. The impulse
 responses, which need to have the same length for every channel, have a
 duration of 12 times the biggest time constant. The length of the impulse
 response is therefore ``12*max(time_constant)*sampling_rate``. The envelope
 is a gaussian function (Gabor filter). The impulse responses are normalized
 with respect to the transmitted power, i.e. the rms of the filter taps is
 1.

 Initialisation parameters:

 ``source``
 Source sound or filterbank.

 ``f``
 List or array of the sweep starting frequencies
 (:math:`f_{\mathrm{instantaneous}}=f+c*t`).

 ``time_constant``
 Determines the duration of the envelope and consequently the length of
 the impluse response.

 ``c=1``
 The glide slope (or sweep rate) given ins Hz/second. The time-dependent
 instantaneous frequency is ``f+c*t`` and is therefore going upward when
 c>0 and downward when c<0. ``c`` can either be a scalar and will be the
 same for every channel or an array with the same length as ``f``.

 ``phase=0``
 Phase shift of the carrier.

 Has attributes:

 ``length_impulse_response``
 Number of sample in the impulse responses.

 ``impulse_response``
 Array of shape ``(nchannels, length_impulse_response)`` with each row
 being an impulse response for the corresponding channel.
 '''
 def __init__(self,source, f, time_constant, c=1, phase=0):
 self.f=f=np.asarray(np.atleast_1d(f))
 self.c=c=np.atleast_1d(c)
 self.phase=phase=np.atleast_1d(phase)
 self.time_constant=time_constant=np.asarray(np.atleast_1d(time_constant))
 if len(time_constant)==1:
 time_constant=np.asarray(time_constant*np.ones(len(f)))
 if len(c)==1:
 c=c*np.ones(len(f))
 if len(phase)==1:
 phase=phase*np.ones(len(f))
 self.samplerate = source.samplerate

 Tcst_max=max(time_constant)

 t_start=float(-Tcst_max*6*second)
 t=np.arange(t_start,-t_start,float(1./self.samplerate))

 self.impulse_response=np.zeros((len(f),len(t)))

 for ich in range(len(f)):
 env=np.exp(-(t/(2*time_constant[ich]))**2)
 self.impulse_response[ich,:]=env*np.cos(2*np.pi*(f[ich]*t+c[ich]/2*t**2)+phase[ich])
 self.impulse_response[ich,:]=self.impulse_response[ich,:]/np.sqrt(np.sum(self.impulse_response[ich,:]**2))

 FIRFilterbank.__init__(self, source, self.impulse_response)

[docs]class IIRFilterbank(LinearFilterbank):
 '''
 Filterbank of IIR filters. The filters can be low, high, bandstop or
 bandpass and be of type Elliptic, Butterworth, Chebyshev etc. The
 ``passband`` and ``stopband`` can be scalars (for low or high pass) or
 pairs of parameters (for stopband and passband) yielding similar filters for
 every channel. They can also be arrays of shape ``(1, nchannels)`` for low
 and high pass or ``(2, nchannels)`` for stopband and passband yielding
 different filters along channels. This class uses the scipy iirdesign
 function to generate filter coefficients for every channel.

 See the documentation for scipy.signal.iirdesign for more details.

 Initialisation parameters:

 ``samplerate``
 The sample rate in Hz.

 ``nchannels``
 The number of channels in the bank

 ``passband``, ``stopband``
 The edges of the pass and stop bands in Hz. For lowpass and highpass
 filters, in the case of similar filters for each channel, they are
 scalars and passband<stopband for low pass or stopband>passband for a
 highpass. For a bandpass or bandstop filter, in the case of similar
 filters for each channel, make passband and stopband a list with two
 elements, e.g. for a bandpass have ``passband=[200*Hz, 500*Hz]`` and
 ``stopband=[100*Hz, 600*Hz]``. ``passband`` and ``stopband`` can also be
 arrays of shape ``(1, nchannels)`` for low and high pass or
 ``(2, nchannels)`` for stopband and passband yielding different filters
 along channels.

 ``gpass``
 The maximum loss in the passband in dB. Can be a scalar or an array of
 length ``nchannels``.

 ``gstop``
 The minimum attenuation in the stopband in dB. Can be a scalar or an
 array of length ``nchannels``.

 ``btype``
 One of 'low', 'high', 'bandpass' or 'bandstop'.

 ``ftype``
 The type of IIR filter to design:
 'ellip' (elliptic),
 'butter' (Butterworth),
 'cheby1' (Chebyshev I),
 'cheby2' (Chebyshev II),
 'bessel' (Bessel).

 '''

 def __init__(self, source, nchannels, passband, stopband, gpass, gstop, btype, ftype):

 Wpassband = np.asarray(np.atleast_1d(passband).copy())
 Wstopband = np.asarray(np.atleast_1d(stopband).copy())
 gpass = np.atleast_1d(gpass)
 gstop = np.atleast_1d(gstop)

 self.samplerate=source.samplerate
 if Wpassband.shape != Wstopband.shape:
 raise Exception('passband and stopband must contain the same number of ent')
 try:
 Wpassband=Wpassband/float(self.samplerate)*2+0.0 # wn=1 corresponding to half the sample rate
 Wstopband=Wstopband/float(self.samplerate)*2+0.0
 except DimensionMismatchError:
 raise DimensionMismatchError('IIRFilterbank passband, stopband parameters must be in Hz')

 # now design filterbank
 if btype=='low' or btype=='high':
 if len(Wpassband)==1: #if there is only one Wn value for all channel just repeat it
 self.filt_b, self.filt_a = signal.iirdesign(Wpassband, Wstopband, gpass, gstop, ftype=ftype)
 self.filt_b=np.kron(np.ones((nchannels,1)),self.filt_b)
 self.filt_a=np.kron(np.ones((nchannels,1)),self.filt_a)
 else: #else make nchannels different filters
 if len(gstop) != nchannels: #if the ripple parameters are scalar make them as long as the number of channels
 gpass=np.repeat(gpass,nchannels)
 if len(gstop) != nchannels:
 gstop=np.repeat(gstop,nchannels)
 order=0
 filt_b, filt_a =[1]*nchannels,[1]*nchannels
 for i in range((nchannels)): #generate the different filter coeffcients
 filt_b[i], filt_a[i] = signal.iirdesign(Wpassband[i], Wstopband[i], gpass[i], gstop[i], ftype=ftype)
 if len(filt_b[i])>order: #take the highst order of them to be the size of the filter coefficient matrix
 order=len(filt_b[i])
 self.filt_b=np.zeros((nchannels,order))
 self.filt_a=np.zeros((nchannels,order))
 for i in range((nchannels)): #fill the coefficient matrix
 self.filt_b[i,:len(filt_b[i])], self.filt_a[i,:len(filt_a[i])] = filt_b[i],filt_a[i]
 else:
 if Wpassband.ndim==1: #if there is only one Wn pair of values for all channel just repeat it
 self.filt_b, self.filt_a = signal.iirdesign(Wpassband, Wstopband, gpass, gstop, ftype=ftype)
 self.filt_b=np.kron(np.ones((nchannels,1)),self.filt_b)
 self.filt_a=np.kron(np.ones((nchannels,1)),self.filt_a)
 else:
 if len(gstop) != nchannels:#if the ripple parameters are scalar make them as long as the number of channels
 gpass=np.repeat(gpass,nchannels)
 if len(gstop) != nchannels:
 gstop=np.repeat(gstop,nchannels)
 order=0
 filt_b, filt_a =[1]*nchannels,[1]*nchannels
 for i in range((nchannels)):#take the highst order of them to be the size of the filter coefficient matrix
 filt_b[i], filt_a[i] = signal.iirdesign(Wpassband[:,i], Wstopband[:,i], gpass[i], gstop[i], ftype=ftype)
 if len(filt_b[i])>order:
 order=len(filt_b[i])
 self.filt_b=np.zeros((nchannels,order))
 self.filt_a=np.zeros((nchannels,order))
 for i in range((nchannels)):#fill the coefficient matrix
 self.filt_b[i,:len(filt_b[i])], self.filt_a[i,:len(filt_a[i])] = filt_b[i],filt_a[i]

 self.filt_a=self.filt_a.reshape(self.filt_a.shape[0],self.filt_a.shape[1],1)
 self.filt_b=self.filt_b.reshape(self.filt_b.shape[0],self.filt_b.shape[1],1)
 self.nchannels = nchannels
 self.passband = passband
 self.stopband = stopband
 self.gpass = gpass
 self.gstop = gstop
 self.ftype= ftype
 self.order= self.filt_a.shape[1]-1
 LinearFilterbank.__init__(self,source, self.filt_b, self.filt_a)

[docs]class Butterworth(LinearFilterbank):
 '''
 Filterbank of low, high, bandstop or bandpass Butterworth filters.
 The cut-off frequencies or the band frequencies can either be the same for
 each channel or different along channels.

 Initialisation parameters:

 ``samplerate``
 Sample rate.

 ``nchannels``
 Number of filters in the bank.

 ``order``
 Order of the filters.

 ``fc``
 Cutoff parameter(s) in Hz. For the case of a lowpass or highpass
 filterbank, ``fc`` is either a scalar (thus the same value for all of
 the channels) or an array of length ``nchannels``. For the case of a
 bandpass or bandstop, ``fc`` is either a pair of scalar defining the
 bandpass or bandstop (thus the same values for all of the channels) or
 an array of shape ``(2, nchannels)`` to define a pair for every channel.

 ``btype``
 One of 'low', 'high', 'bandpass' or 'bandstop'.
 '''

 def __init__(self,source, nchannels, order, fc, btype='low'):
 Wn = np.asarray(np.atleast_1d(fc)).copy() #Scalar inputs are converted to 1-dimensional arrays
 self.samplerate = source.samplerate
 Wn= Wn/float(self.samplerate)*2 # wn=1 corresponding to half the sample rate

 if btype=='low' or btype=='high':
 self.filt_b=np.zeros((nchannels,order+1))
 self.filt_a=np.zeros((nchannels,order+1))
 if len(Wn)==1: #if there is only one Wn value for all channel just repeat it
 self.filt_b, self.filt_a = signal.butter(order, Wn, btype=btype)
 self.filt_b=np.kron(np.ones((nchannels,1)),self.filt_b)
 self.filt_a=np.kron(np.ones((nchannels,1)),self.filt_a)
 else: #else make nchannels different filters
 for i in range((nchannels)):
 self.filt_b[i,:], self.filt_a[i,:] = signal.butter(order, Wn[i], btype=btype)
 else:
 self.filt_b=np.zeros((nchannels,2*order+1))
 self.filt_a=np.zeros((nchannels,2*order+1))
 if Wn.ndim==1: #if there is only one Wn pair of values for all channel just repeat it
 self.filt_b, self.filt_a = signal.butter(order, Wn, btype=btype)
 self.filt_b=np.kron(np.ones((nchannels,1)),self.filt_b)
 self.filt_a=np.kron(np.ones((nchannels,1)),self.filt_a)
 else:
 for i in range((nchannels)):
 self.filt_b[i,:], self.filt_a[i,:] = signal.butter(order, Wn[:,i], btype=btype)

 self.filt_a=self.filt_a.reshape(self.filt_a.shape[0],self.filt_a.shape[1],1)
 self.filt_b=self.filt_b.reshape(self.filt_b.shape[0],self.filt_b.shape[1],1)
 self.nchannels = nchannels
 LinearFilterbank.__init__(self,source, self.filt_b, self.filt_a)

[docs]class LowPass(LinearFilterbank):
 '''
 Bank of 1st-order lowpass filters

 The code is based on the code found in the
 `Meddis toolbox <https://github.com/rmeddis/MAP/>`__.
 It was implemented here to be used in the DRNL cochlear model implementation.

 Initialised with arguments:

 ``source``
 Source of the filterbank.

 ``fc``
 Value, list or array (with length = number of channels) of cutoff
 frequencies.
 '''
 def __init__(self,source,fc):
 fc = np.asarray(np.atleast_1d(fc))
 if len(fc)==1:
 fc = fc*np.ones(source.nchannels)
 nchannels=len(fc)
 self.samplerate= source.samplerate
 dt=float(1./self.samplerate)

 self.filt_b=np.zeros((nchannels, 2, 1))
 self.filt_a=np.zeros((nchannels, 2, 1))
 tau=1/(2*np.pi*fc)
 self.filt_b[:,0,0]=dt/tau
 self.filt_b[:,1,0]=0*np.ones(nchannels)
 self.filt_a[:,0,0]=1*np.ones(nchannels)
 self.filt_a[:,1,0]=-(1-dt/tau)
 LinearFilterbank.__init__(self,source, self.filt_b, self.filt_a)

[docs]class Cascade(LinearFilterbank):
 '''
 Cascade of ``n`` times a linear filterbank.

 Initialised with arguments:

 ``source``
 Source of the new filterbank.

 ``filterbank``
 Filterbank object to be put in cascade

 ``n``
 Number of cascades
 '''

 def __init__(self,source, filterbank,n):
 b=filterbank.filt_b
 a=filterbank.filt_a
 self.samplerate = source.samplerate
 self.nchannels=filterbank.nchannels
 self.filt_b=np.zeros((b.shape[0], b.shape[1],n))
 self.filt_a=np.zeros((a.shape[0], a.shape[1],n))
 for i in range((n)):
 self.filt_b[:,:,i]=b[:,:,0]
 self.filt_a[:,:,i]=a[:,:,0]

 LinearFilterbank.__init__(self, source,self.filt_b, self.filt_a)

[docs]class AsymmetricCompensation(LinearFilterbank):
 '''
 Bank of asymmetric compensation filters.

 Those filters are meant to be used in cascade with gammatone filters to
 approximate gammachirp filters (Unoki et al., 2001, Improvement of
 an IIR asymmetric compensation gammachirp filter, Acoust. Sci. & Tech.).
 They are implemented a a cascade of low order filters. The code
 is based on the implementation found in the
 `AIM-MAT toolbox <https://code.soundsoftware.ac.uk/projects/aimmat>`__.

 Initialised with arguments:

 ``source``
 Source of the filterbank.

 ``f``
 List or array of the cut off frequencies.

 ``b=1.019``
 Determines the duration of the impulse response.
 Can either be a scalar and will be the same for every channel or
 an array with the same length as ``cf``.

 ``c=1``
 The glide slope when this filter is used to implement a gammachirp.
 Can either be a scalar and will be the same for every channel or
 an array with the same length as ``cf``.

 ``ncascades=4``
 The number of time the basic filter is put in cascade.
 '''

 def __init__(self, source, f,b=1.019, c=1,ncascades=4):

 f = np.asarray(np.atleast_1d(f))
 self.f = f
 self.samplerate = source.samplerate
 ERBw=24.7*(4.37e-3*f+1.)
 p0=2
 p1=1.7818*(1-0.0791*b)*(1-0.1655*abs(c))
 p2=0.5689*(1-0.1620*b)*(1-0.0857*abs(c))
 p3=0.2523*(1-0.0244*b)*(1+0.0574*abs(c))
 p4=1.0724

 self.filt_b=np.zeros((len(f), 3, ncascades))
 self.filt_a=np.zeros((len(f), 3, ncascades))

 for k in np.arange(ncascades):

 r=np.exp(-p1*(p0/p4)**(k)*2*np.pi*b*ERBw/float(self.samplerate)) #k instead of k-1 because range 0 N-1
 Df=(p0*p4)**(k)*p2*c*b*ERBw

 phi=2*np.pi*np.maximum((f+Df), 0)/float(self.samplerate)
 psy=2*np.pi*np.maximum((f-Df), 0)/float(self.samplerate)

 ap=np.vstack((np.ones(r.shape),-2*r*np.cos(phi), r**2)).T
 bz=np.vstack((np.ones(r.shape),-2*r*np.cos(psy), r**2)).T

 fn=f#+ compensation_filter_order* p3 *c *b *ERBw/4;

 vwr=np.exp(1j*2*np.pi*fn/float(self.samplerate))
 vwrs=np.vstack((np.ones(vwr.shape), vwr, vwr**2)).T

 ##normilization stuff
 nrm=np.abs(np.sum(vwrs*ap, 1)/np.sum(vwrs*bz, 1))

 bz=bz*np.tile(nrm,[3,1]).T
 self.filt_b[:, :, k]=bz
 self.filt_a[:, :, k]=ap

 LinearFilterbank.__init__(self, source, self.filt_b, self.filt_a)

[docs]def asymmetric_compensation_coeffs(samplerate,fr,filt_b,filt_a,b,c,p0,p1,p2,p3,p4):
 '''
 This function is used to generated the coefficient of the asymmetric
 compensation filter used for the gammachirp implementation.
 '''
 samplerate = float(samplerate)
 ERBw=24.7*(4.37e-3*fr+1.)
 nbr_cascade=4
 for k in np.arange(nbr_cascade):
 r=np.exp(-p1*(p0/p4)**(k)*2*np.pi*b*ERBw/samplerate) #k instead of k-1 because range 0 N-1

 Dfr=(p0*p4)**(k)*p2*c*b*ERBw

 phi=2*np.pi*np.maximum((fr+Dfr), 0)/samplerate
 psy=2*np.pi*np.maximum((fr-Dfr), 0)/samplerate

 ap=np.vstack((np.ones(r.shape),-2*r*np.cos(phi), r**2)).T
 bz=np.vstack((np.ones(r.shape),-2*r*np.cos(psy), r**2)).T

 vwr=np.exp(1j*2*np.pi*fr/samplerate)
 vwrs=np.vstack((np.ones(vwr.shape), vwr, vwr**2)).T

 ##normilization stuff
 nrm=np.abs(np.sum(vwrs*ap, 1)/np.sum(vwrs*bz, 1))
 bz=bz*np.tile(nrm,[3,1]).T
 filt_b[:, :, k]=bz
 filt_a[:, :, k]=ap

 return filt_b,filt_a

 Source code for brian2hears.filtering.firfilterbank

'''
FIR filterbank, can be treated as a special case of LinearFilterbank, but an
optimisation is possible using buffered output by using FFT based convolution
as in HRTF.apply. To do this is slightly tricky because it needs to cache
previous inputs. For the moment, we implement it as a special case of
LinearFilterbank but later this will change to using the FFT method.
'''
import numpy as np
from numpy.fft import fft, ifft

from .filterbank import *
from .linearfilterbank import *

__all__ = ['FIRFilterbank', 'LinearFIRFilterbank', 'FFTFIRFilterbank']

class LinearFIRFilterbank(LinearFilterbank):
 def __init__(self, source, impulse_response, minimum_buffer_size=None):
 # if a 1D impulse response is given we apply it to every channel
 # Note that because we are using LinearFilterbank at the moment, this
 # means duplicating the impulse response. However, it could be stored
 # just once when we move to using FFT based convolution and in fact this
 # will save a lot of computation as the FFT only needs to be computed
 # once then.
 if len(impulse_response.shape)==1:
 impulse_response = np.repeat(np.reshape(impulse_response, (1, len(impulse_response))), source.nchannels, axis=0)
 # Automatically duplicate mono input to fit the desired output shape
 if impulse_response.shape[0]!=source.nchannels:
 if source.nchannels!=1:
 raise ValueError('Can only automatically duplicate source channels for mono sources, use RestructureFilterbank.')
 source = RestructureFilterbank(source, impulse_response.shape[0])
 # Implement it as a LinearFilterbank
 b = np.reshape(impulse_response, impulse_response.shape+(1,))
 a = np.zeros_like(b)
 a[:, 0, :] = 1
 LinearFilterbank.__init__(self, source, b, a)
 if minimum_buffer_size is not None:
 self.minimum_buffer_size = minimum_buffer_size

class FFTFIRFilterbank(Filterbank):
 def __init__(self, source, impulse_response, minimum_buffer_size=None):
 # if a 1D impulse response is given we apply it to every channel
 # Note that because we are using LinearFilterbank at the moment, this
 # means duplicating the impulse response. However, it could be stored
 # just once when we move to using FFT based convolution and in fact this
 # will save a lot of computation as the FFT only needs to be computed
 # once then.
 if len(impulse_response.shape)==1:
 impulse_response = np.repeat(np.reshape(impulse_response, (1, len(impulse_response))), source.nchannels, axis=0)
 # Automatically duplicate mono input to fit the desired output shape
 if impulse_response.shape[0]!=source.nchannels:
 if source.nchannels!=1:
 raise ValueError('Can only automatically duplicate source channels for mono sources, use RestructureFilterbank.')
 source = RestructureFilterbank(source, impulse_response.shape[0])
 Filterbank.__init__(self, source)

 self.input_cache = np.zeros((impulse_response.shape[1], self.nchannels))
 self.impulse_response = impulse_response
 self.fftcache_nmax = -1
 if minimum_buffer_size is None:
 minimum_buffer_size = 3*impulse_response.shape[1]
 self.minimum_buffer_size = minimum_buffer_size

 def buffer_init(self):
 Filterbank.buffer_init(self)
 self.input_cache[:] = 0

 # This version uses a single FFT/IFFT call, using the axis keyword, but it
 # doesn't appear to be any more efficient than looping, and uses much more
 # memory, although my tests weren't exhaustive.
def buffer_apply(self, input):
nmax = max(self.input_cache.shape[0]+input.shape[0], self.impulse_response.shape[1])
nmax = 2**int(ceil(log2(nmax)))
if self.fftcache_nmax!=nmax:
impulse response: (nchannels, ir_length)
ir = zeros((self.nchannels, nmax))
ir[:, :self.impulse_response.shape[1]] = self.impulse_response
fftcache: (ir_length, nchannels)
self.fftcache = fft(ir, n=nmax, axis=1).T
self.fftcache_nmax = nmax
fullinput = vstack((self.input_cache, input))
fullinput = vstack((fullinput, zeros((nmax-fullinput.shape[1], self.nchannels))))
fullinput: (ir_length, nchannels)
fullinput_fft = fft(fullinput, n=nmax, axis=0)
fulloutput_fft = fullinput_fft*self.fftcache
fulloutput = ifft(fulloutput_fft, n=nmax, axis=0).real
output = fulloutput[self.input_cache.shape[0]:self.input_cache.shape[0]+input.shape[0]]
update input cache
nic = self.input_cache.shape[0]
ni = input.shape[0]
#print ni, nic
if ni>=nic:
self.input_cache[:, :] = input[-nic:, :]
else:
self.input_cache[:-ni, :] = self.input_cache[ni:, :]
self.input_cache[-ni:, :] = input
return output

 def buffer_apply(self, input):
 output = np.zeros_like(input)
 nmax = max(self.input_cache.shape[0]+input.shape[0], self.impulse_response.shape[1])
 nmax = 2**int(np.ceil(np.log2(nmax)))
 if self.fftcache_nmax!=nmax:
 self.fftcache = []
 for i, (previnput, curinput, ir) in enumerate(zip(self.input_cache.T,
 input.T,
 self.impulse_response)):
 fullinput = np.hstack((previnput, curinput))
 # pad
 fullinput = np.hstack((fullinput, np.zeros(nmax-len(fullinput))))
 # apply fft
 if self.fftcache_nmax!=nmax:
 # recompute IR fft, first pad, then take fft, then store
 ir = np.hstack((ir, np.zeros(nmax-len(ir))))
 ir_fft = fft(ir, n=nmax)
 self.fftcache.append(ir_fft)
 else:
 ir_fft = self.fftcache[i]
 fullinput_fft = fft(fullinput, n=nmax)
 curoutput_fft = fullinput_fft*ir_fft
 curoutput = ifft(curoutput_fft)
 # unpad
 curoutput = curoutput[len(previnput):len(previnput)+len(curinput)]
 output[:, i] = curoutput.real
 if self.fftcache_nmax!=nmax:
 self.fftcache_nmax = nmax
 # update input cache
 nic = self.input_cache.shape[0]
 ni = input.shape[0]
 #print ni, nic
 if ni>=nic:
 self.input_cache[:, :] = input[-nic:, :]
 else:
 self.input_cache[:-ni, :] = self.input_cache[ni:, :]
 self.input_cache[-ni:, :] = input
 return output

[docs]class FIRFilterbank(Filterbank):
 '''
 Finite impulse response filterbank

 Initialisation parameters:

 ``source``
 Source sound or filterbank.
 ``impulse_response``
 Either a 1D array providing a single impulse response applied to every
 input channel, or a 2D array of shape ``(nchannels, ir_length)`` for
 ``ir_length`` the number of samples in the impulse response. Note that
 if you are using a multichannel sound ``x`` as a set of impulse responses,
 the array should be ``impulse_response=array(x.T)``.
 ``minimum_buffer_size=None``
 If specified, gives a minimum size to the buffer. By default, for the
 FFT convolution based implementation of ``FIRFilterbank``, the minimum
 buffer size will be ``3*ir_length``. For maximum efficiency with FFTs,
 ``buffer_size+ir_length`` should be a power of 2 (otherwise there will
 be some zero padding), and ``buffer_size`` should be as large as
 possible.
 '''
 def __init__(self, source, impulse_response, use_linearfilterbank=False,
 minimum_buffer_size=None):
 if use_linearfilterbank:
 self.__class__ = LinearFIRFilterbank
 else:
 self.__class__ = FFTFIRFilterbank
 self.__init__(source, impulse_response,
 minimum_buffer_size=minimum_buffer_size)

 Source code for brian2hears.filtering.fractionaldelay

import numpy as np

from .firfilterbank import *

__all__ = ['FractionalDelay']

[docs]class FractionalDelay(FIRFilterbank):
 '''
 Filterbank for applying delays which are fractional multiples of the timestep

 Initialised with arguments:

 ``source``
 Source sound or filterbank.
 ``delays``
 A list or array of delays to apply (the number of channels in the
 filterbank will be equal to the length of this).
 ``filter_length=None``
 Use this to explicitly set the length of the impulse response, should
 be odd. If not specified, it will be automatically determined from
 the delays. See notes below.
 ``**args``
 Arguments to pass to :class:`FIRFilterbank` (from which this class
 is derived).

 Attributes

 .. attribute:: delay_offset

 The global delay offset. If the specified delay in a given channel is
 ``delay`` the actual delay will be ``delay_offset+delay``. It is equal
 to ``(filter_length/2)/source.samplerate``.

 .. attribute:: filter_length

 The length of the filter to use. This is automatically determined
 from the delays. Note that ``delay_offset`` should be larger than the
 maximum positive or negative delay. The minimum filter length is
 by default 2048 samples, which allows for good accuracy for signals
 with power above 20 Hz. For low frequency analysis, longer filters will
 be necessary. For high frequency analysis, a shorter filter length could
 be used for a more efficient computation.

 Notes

 Inducing a delay for a sound that is an integer multiple of the timestep
 (1/samplerate) can be done simply by offsetting the samples, e.g.
 ``sound[3:]`` is ``sound`` delayed by ``3/sound.samplerate``. However,
 for fractional multiples of the timestep, the sound needs to be filtered.
 The theory and code for this was adapted from
 `http://www.labbookpages.co.uk/audio/beamforming/fractionalDelay.html <http://www.labbookpages.co.uk/audio/beamforming/fractionalDelay.html>`__.

 The filters induce a delay of ``delay_offset+delay`` where ``delay_offset``
 is a positive value larger than the maximum positive or negative delay.
 This value is available as the attribute ``delay_offset``.
 '''
 def __init__(self, source, delays, filter_length=None, **args):
 delays = np.asarray(np.atleast_1d(delays))
 delay_max = np.amax(abs(delays))
 delay_max_int = int(np.ceil(source.samplerate*delay_max))
 if filter_length is None:
 filter_length = 2*int(delay_max_int*1.25)+1
 if filter_length<2048:
 filter_length = 2048
 if filter_length/2<=delay_max_int:
 raise ValueError('Filter length not long enough for selected delays.')
 self.delay_offset = (filter_length//2)/source.samplerate
 self.filter_length = filter_length
 self.delays = delays
 irs = [fractional_delay_ir(delay, source.samplerate,
 filter_length=filter_length) for delay in delays]
 irs = np.array(irs)
 self.impulse_response = irs
 FIRFilterbank.__init__(self, source, irs, **args)

Adapted from
http://www.labbookpages.co.uk/audio/beamforming/fractionalDelay.html
def fractional_delay_ir(delay, samplerate, filter_length=151):
 delay = float(delay*samplerate)
 centre_tap = filter_length // 2
 t = np.arange(filter_length)
 x = t-delay
 if abs(round(delay)-float(delay))<1e-10:
 return np.array(x==centre_tap, dtype=float)
 sinc = np.sin(np.pi*(x-centre_tap))/(np.pi*(x-centre_tap))
 window = 0.54-0.46*np.cos(2.0*np.pi*(x+0.5)/filter_length) # Hamming window
 tap_weight = window*sinc
 return tap_weight

 Source code for brian2hears.filtering.linearfilterbank

from builtins import range, zip

import numpy as np
from brian2.codegen.cpp_prefs import get_compiler_and_args
from brian2.utils.logger import get_logger

from brian2.codegen.runtime.cython_rt.extension_manager import cython_extension_manager
try:
 import Cython
except ImportError:
 Cython = None

from .filterbank import Filterbank, RestructureFilterbank

__all__ = ['LinearFilterbank']

logger = get_logger('brian2.'+__name__) # bit of a hack, but fine

def _scipy_apply_linear_filterbank(b, a, x, zi):
 '''
 Parallel version of scipy lfilter command for a bank of n sequences of length 1

 In scipy.lfilter, you can apply a filter to multiple sounds at the same time,
 but you can't apply a bank of filters at the same time. This command does
 that. The coeffs b, a must be of shape (n,m,p), x must be of shape (s, n),
 and zi must be of shape (n,m-1,p). Here n is the number of channels in the
 filterbank, m is the order of the filter, p is the number of filters in
 a chain (cascade) to apply (you do first with (:,:,0) then (:,:,1), etc.),
 and s is the size of the buffer segment.
 '''
 alf_cache_b00 = [0]*zi.shape[2]
 alf_cache_a1 = [0]*zi.shape[2]
 alf_cache_b1 = [0]*zi.shape[2]
 alf_cache_zi00 = [0]*zi.shape[2]
 alf_cache_zi0 = [0]*zi.shape[2]
 alf_cache_zi1 = [0]*zi.shape[2]
 for curf in range(zi.shape[2]):
 alf_cache_b00[curf] = b[:, 0, curf]
 alf_cache_zi00[curf] = zi[:, 0, curf]
 alf_cache_b1[curf] = b[:, 1:b.shape[1], curf]
 alf_cache_a1[curf] = a[:, 1:b.shape[1], curf]
 alf_cache_zi0[curf] = zi[:, 0:b.shape[1]-1, curf]
 alf_cache_zi1[curf] = zi[:, 1:b.shape[1], curf]
 X = x.copy()
 output = np.empty_like(X)
 num_cascade = zi.shape[2]
 b_loop_size = b.shape[1]-2
 y = np.zeros(zi.shape[0])
 yr = np.reshape(y, (1, len(y))).T
 t = np.zeros(alf_cache_b1[0].shape, order='F')
 t2 = np.zeros(alf_cache_b1[0].shape, order='F')
 for sample, (x, o) in enumerate(zip(X, output)):
 xr = np.reshape(x, (1, len(x))).T
 for curf in range(num_cascade):
 #y = b[:, 0, curf]*x+zi[:, 0, curf]
 np.multiply(alf_cache_b00[curf], x, y)
 np.add(y, alf_cache_zi00[curf], y)
 #zi[:, :i-1, curf] = b[:, 1:i, curf]*xr+zi[:, 1:i, curf]-a[:, 1:i, curf]*yr
 np.multiply(alf_cache_b1[curf], xr, t)
 np.add(t, alf_cache_zi1[curf], t)
 np.multiply(alf_cache_a1[curf], yr, t2)
 np.subtract(t, t2, alf_cache_zi0[curf])
 u = x
 ur = xr
 x = y
 xr = yr
 y = u
 yr = ur
 #output[sample] = y
 o[:] = x
 return output

class CythonLinearFilterbankApply(object):
 def __init__(self):
 self.compiler, self.extra_compile_args = get_compiler_and_args()
 code = '''
#cython: language_level=3
#cython: boundscheck=False
#cython: wraparound=False
#cython: infer_types=True

import numpy as _numpy
cimport numpy as _numpy

cpdef parallel_lfilter(_numpy.ndarray[_numpy.float64_t, ndim=3] b,
 _numpy.ndarray[_numpy.float64_t, ndim=3] a,
 _numpy.ndarray[_numpy.float64_t, ndim=2] x,
 _numpy.ndarray[_numpy.float64_t, ndim=3] zi,
 _numpy.ndarray[_numpy.float64_t, ndim=2] y):
 cdef int n, m, p, n1, m1, p1, numsamples, s, k, i, j
 cdef double* py
 cdef double* px
 cdef double* pa
 cdef double* pb
 cdef double* pzi
 cdef double* pzi2
 n = b.shape[0]
 m = b.shape[1]
 p = b.shape[2]
 numsamples = x.shape[0]
 for s in range(numsamples):
 py = &(y[s, 0])
 px = &(x[s, 0])
 for k in range(p):
 pb = &(b[0, 0, k])
 pzi = &(zi[0, 0, k])
 for j in range(n):
 y[s, j] = b[j, 0, k]*x[s, j] + zi[j, 0, k]
 # py[j] = pb[j]*px[j] + pzi[j]
 for i in range(m-2):
 pa = &(a[0, i+1, k])
 pb = &(b[0, i+1, k])
 pzi = &(zi[0, i, k])
 pzi2 = &(zi[0, i+1, k])
 for j in range(n):
 # zi[j, i, k] = b[j, i+1, k]*x[s, j] + zi[j, i+1, k] - a[j, i+1, k]*y[s,j]
 pzi[j] = pb[j]*px[j] + pzi2[j] - pa[j]*py[j]
 pa = &(a[0, m-1, k])
 pb = &(b[0, m-1, k])
 pzi = &(zi[0, m-2, k])
 for j in range(n):
 # zi[j, m-2, k] = b[j, m-1, k]*x[s,j] - a[j, m-1, k]*y[s,j]
 pzi[j] = pb[j]*px[j] - pa[j]*py[j]
 if k<p-1:
 for j in range(n):
 # x[s, j] = y[s, j]
 px[j] = py[j]
 '''
 self.compiled_code = cython_extension_manager.create_extension(code,
 compiler=self.compiler,
 extra_compile_args=self.extra_compile_args)
 def __call__(self, b, a, x, zi):
 if zi.shape[2]>1:
 # we need to do this so as not to alter the values in x in the C code below
 # but if zi.shape[2] is 1 there is only one filter in the chain and the
 # copy operation at the end of the C code will never happen.
 x = np.array(x, copy=True, order='C')
 else:
 # make sure that the array is in C-order
 x = np.asarray(x, order='C')
 y = np.empty_like(x)
 n, m, p = b.shape
 n1, m1, p1 = a.shape
 numsamples = x.shape[0]
 n = int(n)
 m = int(m)
 p = int(p)
 n1 = int(n1)
 m1 = int(m1)
 p1 = int(p1)
 numsamples = int(numsamples)
 if n1 != n or m1 != m or p1 != p or x.shape != (numsamples, n) or zi.shape != (n, m, p):
 raise ValueError('Data has wrong shape.')
 if numsamples>1 and not x.flags['C_CONTIGUOUS']:
 raise ValueError('Input data must be C_CONTIGUOUS')
 if not b.flags['F_CONTIGUOUS'] or not a.flags['F_CONTIGUOUS'] or not zi.flags['F_CONTIGUOUS']:
 raise ValueError('Filter parameters must be F_CONTIGUOUS')
 self.compiled_code.parallel_lfilter(b, a, x, zi, y)
 return y

[docs]class LinearFilterbank(Filterbank):
 '''
 Generalised linear filterbank

 Initialisation arguments:

 ``source``
 The input to the filterbank, must have the same number of channels or
 just a single channel. In the latter case, the channels will be
 replicated.
 ``b``, ``a``
 The coeffs b, a must be of shape ``(nchannels, m)`` or
 ``(nchannels, m, p)``. Here ``m`` is
 the order of the filters, and ``p`` is the number of filters in a
 chain (first you apply ``[:, :, 0]``, then ``[:, :, 1]``, etc.).

 The filter parameters are stored in the modifiable attributes ``filt_b``,
 ``filt_a`` and ``filt_state`` (the variable ``z`` in the section below).

 Has one method:

 .. automethod:: decascade

 Notes

 These notes adapted from scipy's :func:`~scipy.signal.lfilter` function.

 The filterbank is implemented as a direct II transposed structure.
 This means that for a single channel and element of the filter cascade,
 the output y for an input x is defined by::

 a[0]*y[m] = b[0]*x[m] + b[1]*x[m-1] + ... + b[m]*x[0]
 - a[1]*y[m-1] - ... - a[m]*y[0]

 using the following difference equations::

 y[i] = b[0]*x[i] + z[0,i-1]
 z[0,i] = b[1]*x[i] + z[1,i-1] - a[1]*y[i]
 ...
 z[m-3,i] = b[m-2]*x[i] + z[m-2,i-1] - a[m-2]*y[i]
 z[m-2,i] = b[m-1]*x[i] - a[m-1]*y[i]

 where i is the output sample number.

 The rational transfer function describing this filter in the
 z-transform domain is::

 -1 -nb
 b[0] + b[1]z + ... + b[m] z
 Y(z) = --------------------------------- X(z)
 -1 -na
 a[0] + a[1]z + ... + a[m] z

 '''
 def __init__(self, source, b, a):
 # Automatically duplicate mono input to fit the desired output shape
 if b.shape[0]!=source.nchannels:
 if source.nchannels!=1:
 raise ValueError('Can only automatically duplicate source channels for mono sources, use RestructureFilterbank.')
 source = RestructureFilterbank(source, b.shape[0])
 Filterbank.__init__(self, source)
 # Compiled version of filtering requires Fortran ordering of filter params
 if len(b.shape)==2 and len(a.shape)==2:
 b = np.reshape(b, b.shape+(1,))
 a = np.reshape(a, a.shape+(1,))
 self.filt_b = np.array(b, order='F')
 self.filt_a = np.array(a, order='F')
 self.filt_state = np.zeros((b.shape[0], b.shape[1], b.shape[2]), order='F')
 # Check not only for the availability of Cython, but also whether
 # they can successfully compile a simple test program
 from brian2.codegen.runtime.cython_rt.cython_rt import CythonCodeObject
 if Cython is not None and CythonCodeObject.is_available():
 self.use_cython = True
 else:
 self.use_cython = False

 if self.use_cython:
 logger.debug("Using Cython for LinearFilterbank")
 self.cython_func = CythonLinearFilterbankApply()

 def reset(self):
 self.buffer_init()

 def buffer_init(self):
 Filterbank.buffer_init(self)
 self.filt_state[:] = 0

 def buffer_apply(self, input):

 if self.use_cython:
 return self.cython_func(self.filt_b, self.filt_a, input, self.filt_state)
 else:
 return _scipy_apply_linear_filterbank(self.filt_b, self.filt_a, input,
 self.filt_state)

[docs] def decascade(self, ncascade=1):
 '''
 Reduces cascades of low order filters into smaller cascades of high order filters.

 ``ncascade`` is the number of cascaded filters to use, which should be
 a divisor of the original number.

 Note that higher order filters are often numerically unstable.
 '''
 n, m, p = self.filt_b.shape
 if p%ncascade!=0:
 raise ValueError('Number of cascades must be a divisor of original number of cascaded filters.')
 b = np.zeros((n, (m-1)*(p/ncascade)+1, ncascade))
 a = np.zeros((n, (m-1)*(p/ncascade)+1, ncascade))
 for i in range(n):
 for k in range(ncascade):
 bp = np.ones(1)
 ap = np.ones(1)
 for j in range(k*(p/ncascade), (k+1)*(p/ncascade)):
 bp = np.polymul(bp, self.filt_b[i, ::-1, j])
 ap = np.polymul(ap, self.filt_a[i, ::-1, j])
 bp = bp[::-1]
 ap = ap[::-1]
 a0 = ap[0]
 ap /= a0
 bp /= a0
 b[i, :len(bp), k] = bp
 a[i, :len(ap), k] = ap
 self.filt_b = np.array(b, order='F')
 self.filt_a = np.array(a, order='F')
 self.filt_state = np.zeros((b.shape[0], b.shape[1], b.shape[2]), order='F')

 Source code for brian2hears.filtering.tan_carney

import warnings

import numpy as np
import scipy.signal as signal

from brian2 import (NeuronGroup, network_operation,
 Hz, ms)

from brian2hears.filtering.filterbank import (FunctionFilterbank,
 ControlFilterbank,
 CombinedFilterbank,
 RestructureFilterbank)
from brian2hears.filtering.linearfilterbank import LinearFilterbank
from brian2hears.filtering.filterbankgroup import FilterbankGroup

__all__=['TanCarney', 'MiddleEar', 'ZhangSynapse', 'ZhangSynapseSpikes',
 'ZhangSynapseRate']

[docs]class MiddleEar(LinearFilterbank):
 '''
 Implements the middle ear model from Tan & Carney (2003) (linear filter
 with two pole pairs and one double zero). The gain is normalized for the
 response of the analog filter at 1000Hz as in the model of Tan & Carney
 (their actual C code does however result in a slightly different
 normalization, the difference in overall level is about 0.33dB (to get
 exactly the same output as in their model, set the ``gain`` parameter to
 0.962512703689).

 Tan, Q., and L. H. Carney.
 "A Phenomenological Model for the Responses of Auditory-nerve Fibers.
 II. Nonlinear Tuning with a Frequency Glide".
 The Journal of the Acoustical Society of America 114 (2003): 2007.
 '''
 def __init__(self, source, gain=1, **kwds):
 # Automatically duplicate mono input to fit the desired output shape
 gain = np.atleast_1d(gain)
 if len(gain) != source.nchannels and len(gain) != 1:
 if source.nchannels != 1:
 raise ValueError('Can only automatically duplicate source '
 'channels for mono sources, use '
 'RestructureFilterbank.')
 source = RestructureFilterbank(source, len(gain))
 samplerate = source.samplerate
 zeros = np.array([-200, -200])
 poles = np.array([-250 + 400j, -250 - 400j,
 -2000 + 6000j, -2000 - 6000j])
 # use an arbitrary gain here, will be normalized afterwards
 b, a = signal.zpk2tf(zeros, poles * 2 * np.pi, 1.5e9)
 # normalize the response at 1000Hz (of the analog filter)
 resp = np.abs(signal.freqs(b, a, [1000*2*np.pi])[1]) # response magnitude
 b /= resp
 bd, ad = signal.bilinear(b, a, samplerate)
 bd = (np.tile(bd, (source.nchannels, 1)).T * gain).T
 ad = np.tile(ad, (source.nchannels, 1))
 LinearFilterbank.__init__(self, source, bd, ad, **kwds)

[docs]class ZhangSynapseSpikes(NeuronGroup):
 '''
 The spike-generating Poisson process (with absolute and relative
 refractoriness) of an IHC-AN synapse according to the Zhang et al. (2001)
 model. The ``source`` has to have a state variable ``s``, representing the
 firing rate (e.g. the class `.ZhangSynapseRate`).

 The ``n_per_channel`` argument can be used to generate multiple spike trains
 for every channel of the source group.
 '''
 def __init__(self, source, n_per_channel=1, params=None):
 params = ZhangSynapse._get_parameters(params)
 c_0, c_1 = params['c_0'], params['c_1']
 s_0, s_1 = params['s_0'], params['s_1']
 R_A = params['R_A']
 ns = dict(s_0=s_0, s_1=s_1, c_0=c_0, c_1=c_1)
 eqs = '''
 # time-varying discharge rate, input into this model
 s : Hz

 # discharge-history effect (Equation 20 in differential equation form)
 H = c_0*e_0 + c_1*e_1 : 1
 de_0/dt = -e_0/s_0 : 1 (unless refractory)
 de_1/dt = -e_1/s_1 : 1 (unless refractory)

 # final time-varying discharge rate for the Poisson process, equation 19
 R = s * (1 - H) : Hz
 '''

 # make sure that the s value is first updated in
 # ZhangSynapseRate, then this NeuronGroup is
 # updated by setting order+1
 @network_operation(dt=source.dt[:], when='start', order=source.order+1)
 def distribute_input():
 self.s[:] = source.s[:].repeat(n_per_channel)

 NeuronGroup.__init__(self, len(source) * n_per_channel,
 model=eqs,
 threshold='rand()<R*dt',
 reset='''
 e_0 = 1
 e_1 = 1
 ''',
 refractory=R_A,
 dt=source.dt[:], order=source.order+1,
 namespace=ns,
 method='euler',
)

 self.contained_objects.append(distribute_input)

[docs]class ZhangSynapse(ZhangSynapseSpikes):
 '''
 A `FilterbankGroup` that represents an IHC-AN synapse according to the
 Zhang et al. (2001) model. The ``source`` should be a filterbank, producing
 V_ihc (e.g. `TanCarney`). ``CF`` specifies the characteristic frequencies of
 the AN fibers. ``params`` overwrites any parameters values given in the
 publication.

 The group emits spikes according to a time-varying Poisson process with
 absolute and relative refractoriness (probability of spiking is given by
 state variable ``R``). The continuous probability of spiking without
 refractoriness is available in the state variable ``s``.

 The ``n_per_channel`` argument can be used to generate multiple spike trains
 for every channel.

 If all you need is the state variable ``s``, you can use the class
 `.ZhangSynapseRate` instead which does not simulate the spike-generating
 Poisson process.

 For details see:
 Zhang, X., M. G. Heinz, I. C. Bruce, and L. H. Carney.
 "A Phenomenological Model for the Responses of Auditory-nerve Fibers:
 I. Nonlinear Tuning with Compression and Suppression".
 The Journal of the Acoustical Society of America 109 (2001): 648.
 '''

 @staticmethod
 def _get_parameters(params=None):
 # Default values for parameters from table 1, Zhang et al. 2001
 default_params = {'spont': 50*Hz,
 # In the example C code, this is used (with comment: "read Frank's cmpa.c")
 'A_SS': 130*Hz,
 'tau_ST': 60*ms,
 'tau_R': 2*ms,
 'A_RST': 6,
 'PTS': 8.627,
 'P_Imax': 0.6,
 'c_0': 0.5,
 'c_1': 0.5,
 'R_A': 0.75*ms,
 's_0': 1*ms,
 's_1': 12.5*ms}
 if params is None:
 return default_params

 for param, value in params.items():
 if not param in default_params:
 raise KeyError(('"%s" is not a valid parameter, '
 'has to be one of: %s') % (param,
 str(default_params.keys())))
 default_params[param] = value

 return default_params

 def __init__(self, source, CF, n_per_channel=1, params=None):
 params = ZhangSynapse._get_parameters(params)

 rate_model = ZhangSynapseRate(source, CF, params)
 ZhangSynapseSpikes.__init__(self, rate_model, n_per_channel, params)

 self.contained_objects.append(rate_model)

[docs]class ZhangSynapseRate(FilterbankGroup):
 '''
 A `FilterbankGroup` that represents an IHC-AN synapse according to the
 Zhang et al. (2001) model, see `ZhangSynapse` for details. This class does
 not actually generate any spikes, it only simulates the time-varying
 firing rate (not taking refractory effects into account) ``s``.
 '''

 def __init__(self, source, CF, params=None):

 params = ZhangSynapse._get_parameters(params)

 spont = params['spont']
 A_SS = params['A_SS']
 tau_ST = params['tau_ST']
 tau_R = params['tau_R']
 A_RST = params['A_RST']
 PTS = params['PTS']
 P_Imax = params['P_Imax']
 c_0 = params['c_0']
 c_1 = params['c_1']
 R_A = params['R_A']
 s_0 = params['s_0']
 s_1 = params['s_1']

 # Equations A1-A5 of Zhang et al. 2001
 A_ON = PTS * A_SS # onset rate
 A_R = (A_ON - A_SS) * A_RST / (1 + A_RST) # rapid response amplitude
 A_ST = A_ON - A_SS - A_R # short-term response amplitude
 P_rest = P_Imax * spont / A_ON # resting permeability
 C_G = spont * (A_ON - spont) / (A_ON*P_rest*(1 - spont/A_SS)) # global concentration

 # Equations A6 (intermediate parameters for store volume computation)
 gamma_1 = C_G / spont
 gamma_2 = C_G / A_SS
 kappa_1 = -1 / tau_R
 kappa_2 = -1 / tau_ST

 # Equations A7-A9 (immediate volume)
 V_I0 = (1 - P_Imax/P_rest)/(gamma_1*((A_R*(kappa_1-kappa_2)/(C_G*P_Imax)) +
 kappa_2/(P_rest*gamma_1) - kappa_2/(P_Imax*gamma_2)))
 V_I1 = (1 - P_Imax/P_rest)/(gamma_1*((A_ST*(kappa_2-kappa_1)/(C_G*P_Imax)) +
 kappa_1/(P_rest*gamma_1) - kappa_1/(P_Imax*gamma_2)))
 V_I = 0.5 * (V_I0 + V_I1)

 # Equations A10 (other intermediate parameters)
 alpha = gamma_2 / (kappa_1*kappa_2)
 beta = -(kappa_1 + kappa_2) * alpha
 theta_1 = alpha * P_Imax/V_I
 theta_2 = V_I/P_Imax
 theta_3 = gamma_2 - 1/P_Imax

 # Equations A11-A12 (local and global permeabilities)
 P_L = ((beta - theta_2*theta_3)/theta_1 - 1) * P_Imax
 P_G = 1 / (theta_3 - 1/P_L)

 # Equations A13-A15
 V_L = theta_1*P_L*P_G # local volume
 C_Irest = spont/P_rest # resting value of immediate concentration
 C_Lrest = C_Irest*(P_rest + P_L)/P_L # local concentration

 # Equation 18 with A16 and A17
 p_1 = P_rest / np.log(2)

 # Equation A17 (using an expression based on the spontaneous rate instead of 18.54, based on the C code)
 V_sat2 = 2 + 3*np.log10(np.asarray(CF)/1000.0)
 V_sat = 20.0*(spont + 1*Hz)/(spont + 5*Hz)*P_Imax*((V_sat2 > 1.5)*(V_sat2 - 1.5) + 1.5)

 # Following Equation A16 (p_2 is the same as P_ST)
 p_2_exponent = abs(np.log(2)*V_sat/P_rest)
 temp1 = np.zeros_like(p_2_exponent)
 temp1[p_2_exponent>=100] = p_2_exponent[p_2_exponent>=100]
 temp1[p_2_exponent<100] = np.log(np.exp(p_2_exponent[p_2_exponent<100])-1)
 p_2 = np.clip(temp1, -np.inf, abs(p_2_exponent))

 ns = dict(
 spont=spont, P_Imax=P_Imax, p_1=p_1, P_rest=P_rest, P_L=P_L, V_I=V_I, P_G=P_G, C_G=C_G,
)

 eqs = '''
 # input into the Synapse
 V_ihc : 1

 # CF in Hz
 CF_param : 1

 # Equation 17 with some corrections to fix overflow problems
 base_P_I_exponent = p_2 * V_ihc : 1
 clip_base_P_I_exponent = clip(base_P_I_exponent, -1e100, 100) : 1
 P_I_exponent = base_P_I_exponent*int(base_P_I_exponent>=100) +
 log(1+exp(clip_base_P_I_exponent))*int(base_P_I_exponent<100) : 1
 P_I = p_1 * P_I_exponent : 1

 # Following Equation A16 (p_2 is the same as P_ST)
 p_2 : 1

 # Equation A18-A19
 # Concentration in the stores (as differential instead of difference equation)
 dC_I/dt = (-P_I*C_I + P_L*(C_L - C_I))/V_I : Hz
 dC_L/dt = (-P_L*(C_L - C_I) + P_G*(C_G - C_L))/V_I : Hz

 # time-varying discharge rate (ignoring refractory effects), equation A20
 s = C_I * P_I : Hz
 '''

 FilterbankGroup.__init__(self, source, 'V_ihc', eqs, namespace=ns, method='euler')
 self.CF_param = np.asarray(CF)
 self.p_2 = p_2
 self.C_I = C_Irest
 self.C_L = C_Lrest

def set_parameters(cf,param):

 parameters=dict()
 parameters['fc_LP_control']=800 #Hz
 parameters['fc_LP_fb']=500 #Hz
 parameters['fp1']=1.0854*cf-106.0034
 parameters['ta']=10**(np.log10(cf)*1.0230 + 0.1607)
 parameters['tb']=10**(np.log10(cf)*1.4292 - 1.1550) - 1000
 parameters['gain80']=10**(np.log10(cf)*0.5732 + 1.5220)
 parameters['rgain']=10**(np.log10(cf)*0.4 + 1.9)
 parameters['average_control']=0.3357
 parameters['zero_r']= np.array(-10**(np.log10(cf)*1.5-0.9))

 if param:
 if not isinstance(param, dict):
 raise TypeError('given parameters must be a dict')
 for key in param.keys():
 if key != 'nlgain' and not key in parameters:
 raise KeyError(key + ' is invalid key entry for given parameters')
 parameters[key] = param[key]

 parameters['nlgain']= (parameters['gain80'] - parameters['rgain'])/parameters['average_control']
 return parameters

class Control_Coefficients:

 def __init__(self,cf,samplerate):
 self.cf = cf
 self.PI2 = 2.*3.14159265358979
 self.nch=len(cf)
 self.fs_bilinear = float(2.0*samplerate)#*ones(self.nch)
self.fs_bilinear =tile(self.fs_bilinear.reshape(self.nch,-1),3)
 self.x_cf=11.9*np.log10(0.8+cf/456);
 self.f_shift=(pow(10,((self.x_cf+1.2)/11.9))-0.8)*456-cf
 self.wbw=cf/4.0
 self.filt_a = np.zeros((len(cf),3,5), order='F') #8 5
self.filt_a[:,0,:] = 1
 self.filt_b = np.zeros((len(cf),3,5), order='F')
 self.control_signal = 0
 self.preal = np.zeros((self.nch,6))
 self.pimg = np.zeros((self.nch,6))
 self.preal,self.pimg = self.analog_poles()

 def return_coefficients(self,control_signal):
 self.wbw=-(self.preal[:,0] - control_signal)/self.PI2

 self.gain_norm_bp=((self.PI2**2
 * np.sqrt(self.wbw**2 + self.f_shift**2)
 * np.sqrt((2*self.cf+self.f_shift)**2 + self.wbw**2)
)**3)/np.sqrt(self.PI2**2*self.cf**2)#
 iord = [1,3,5]

 preal = self.preal[:,iord]-control_signal.T #actually control_signal is the same for the three channels

 temp=(self.fs_bilinear-(preal))**2 + self.pimg[:,iord]**2

 self.filt_a[:,0,0:3] = 1.
 self.filt_a[:,1,0:3]= -2*(self.fs_bilinear**2-(preal)**2-self.pimg[:,iord]**2)/temp
 self.filt_a[:,2,0:3] = ((self.fs_bilinear+(preal))**2+self.pimg[:,iord]**2)/temp
 self.filt_b[:,0,0:3] = 1./temp
 self.filt_b[:,1,0:3] = 2./temp
 self.filt_b[:,2,0:3] = 1./temp

 self.filt_a[:,0,3] = 1.
 self.filt_a[:,1,3]= 1. ## changed from 1 to 0
 self.filt_a[:,2,3] = 0.
 self.filt_b[:,0,3] = self.fs_bilinear
 self.filt_b[:,1,3] = -self.fs_bilinear
 self.filt_b[:,2,3] = 0

self.filt_b[:,:,3] = self.gain_norm_bp*self.filt_b[:,:,3]

 self.filt_a[:,0,4] = 1.
 self.filt_b[:,0,4] = self.gain_norm_bp

 return self.filt_b,self.filt_a

 def analog_poles(self):
 self.preal[:,0] = -self.PI2*self.wbw #that should be -, actually there are never used
 self.preal[:,1] = -self.PI2*self.wbw
 self.preal[:,2] = self.preal[:,0]
 self.preal[:,3] = self.preal[:,1]
 self.preal[:,4] = self.preal[:,0]
 self.preal[:,5] = self.preal[:,1]

 self.pimg[:,0] = self.PI2*(self.cf+self.f_shift)
 self.pimg[:,1] = -self.PI2*(self.cf+self.f_shift)
 self.pimg[:,2] = self.pimg[:,0]
 self.pimg[:,3] = self.pimg[:,1]
 self.pimg[:,4] = self.pimg[:,0]
 self.pimg[:,5] = self.pimg[:,1]

 return self.preal,self.pimg

class Signal_Coefficients:

 def __init__(self,cf,samplerate,parameters):
 self.t = 0
 self.cf = cf
 self.PI2 = 2*3.14159265358979
 self.nch=len(cf)
 self.fs_bilinear = float(2.0*samplerate)#*ones(self.nch)

 self.order_of_pole = 20
 self.half_order_pole = self.order_of_pole/2
 self.order_of_zero = self.half_order_pole

 self.filt_a = np.zeros((len(cf),3,11), order='F')
 self.filt_b = np.zeros((len(cf),3,11), order='F')

 self.preal = np.zeros((self.nch,20))
 self.pimg = np.zeros((self.nch,20))

 self.control_signal = 0

 self.rgain =parameters['rgain']# 10**(log10(cf)*0.4 + 1.9)
 self.fp1=parameters['fp1']#1.0854*cf-106.0034
 self.ta= parameters['ta']# 10**(log10(cf)*1.0230 + 0.1607)
 self.tb= parameters['tb']# 10**(log10(cf)*1.4292 - 1.1550) - 1000
 self.zeroa = parameters['zero_r']# -10**(log10(cf)*1.5-0.9)

 self.zeroamat = np.tile(self.zeroa.reshape(self.nch,-1),10)
 self.preal,self.pimg = self.analog_poles(0)

 self.cfmat = np.tile(self.cf.reshape(self.nch,-1),20)
 self.gain_norm = np.sqrt(np.prod((2*np.pi*self.cfmat-self.pimg[:,0:20])**2+self.preal[:,0:20]**2,axis=1))

 self.gain_norm = self.gain_norm /(np.sqrt((2*np.pi*self.cf)**2+self.zeroa**2))**self.order_of_zero

 def return_coefficients(self,control_signal):
 self.preal,self.pimg = self.analog_poles(control_signal)

 iord = np.arange(2,22,2)-1
 temp=(self.fs_bilinear-self.preal[:,iord])**2 + self.pimg[:,iord]**2
 self.filt_a[:,0,:10] = 1
 self.filt_a[:,1,:10] = -2*(self.fs_bilinear**2-self.preal[:,iord]**2-self.pimg[:,iord]**2)/temp
 self.filt_a[:,2,:10] = ((self.fs_bilinear+self.preal[:,iord])**2+self.pimg[:,iord]**2)/temp

 self.filt_b[:,0,:10] = (-self.zeroamat+self.fs_bilinear)/temp
 self.filt_b[:,1,:10] = (-2*self.zeroamat)/temp
 self.filt_b[:,2,:10] = (-self.zeroamat-self.fs_bilinear)/temp

 self.filt_a[:,0,10] = 1.
 self.filt_b[:,0,10] = self.gain_norm/3.

 return self.filt_b,self.filt_a

 def analog_poles(self,control_signal):
 aa = -self.rgain-control_signal
 aa[aa>=0] = 100
 self.preal[:,0] = -self.rgain-control_signal
 self.preal[:,4] = self.preal[:,0]-self.ta
 self.preal[:,2] = (self.preal[:,0]+self.preal[:,4])*0.5
 self.preal[:,1] = self.preal[:,0]
 self.preal[:,3] = self.preal[:,2]
 self.preal[:,5] = self.preal[:,4]

 self.preal[:,6] = self.preal[:,0]
 self.preal[:,7] = self.preal[:,1]
 self.preal[:,8] = self.preal[:,4]
 self.preal[:,9] = self.preal[:,5]
 self.preal[:,10:] = self.preal[:,:10]

 self.pimg[:,0] = self.PI2*self.fp1
 self.pimg[:,4] = self.pimg[:,0]-self.tb
 self.pimg[:,2] = (self.pimg[:,0]+self.pimg[:,4])*0.5
 self.pimg[:,1] = -self.pimg[:,0]
 self.pimg[:,3] = -self.pimg[:,2]
 self.pimg[:,5] = -self.pimg[:,4]
 self.pimg[:,6] = self.pimg[:,0]
 self.pimg[:,7] = self.pimg[:,1]
 self.pimg[:,8] = self.pimg[:,4]
 self.pimg[:,9] = self.pimg[:,5]
 self.pimg[:,10:] = self.pimg[:,:10]

 return self.preal,self.pimg

class Filter_Update:
 def __init__(self, target,coef):
 self.coef = coef
 self.target = target
 self.param = []
 def __call__(self, input):
 reshaped_input = input[-1,:].reshape(1,-1)
 self.target.filt_b,self.target.filt_a = self.coef.return_coefficients(reshaped_input)
 self.param.append(self.coef.control_signal)

class LowPass_IHC(LinearFilterbank):
 def __init__(self,source,cf,fc,gain,order):
 nch = len(cf)
 TWOPI = 2*np.pi
 self.samplerate = source.samplerate
 c = 2.0 * self.samplerate
 c1LP = (c/Hz - TWOPI*fc) / (c/Hz + TWOPI*fc)
 c2LP = TWOPI*fc/Hz / (TWOPI*fc + c/Hz)

 b_temp = np.array([c2LP,c2LP])
 a_temp = np.array([1,-c1LP])

 filt_b = np.tile(b_temp.reshape([2,1]),[nch,1,order])
 filt_a = np.tile(a_temp.reshape([2,1]),[nch,1,order])
 filt_b[:,:,0] = filt_b[:,:,0]*gain

 LinearFilterbank.__init__(self, source, filt_b, filt_a)

class LowPass_filter(LinearFilterbank):
 def __init__(self,source,cf,fc,gain,order):
 nch = len(cf)
 TWOPI = 2*np.pi
 self.samplerate = source.samplerate
 c = 2.0 * self.samplerate
 c1LP = (c/Hz - TWOPI*fc)

 b_temp = np.array([1,1])/ (c/Hz + TWOPI*fc)
 a_temp = np.array([1,-c1LP/ (c/Hz + TWOPI*fc)])

 filt_b = np.tile(b_temp.reshape([2,1]),[nch,1,order])
 filt_a = np.tile(a_temp.reshape([2,1]),[nch,1,order])
 filt_b[:,:,order-1] = filt_b[:,:,order-1]*gain

 LinearFilterbank.__init__(self, source, filt_b, filt_a)

def saturation_fc(x,A0=1,B=1,C=1,D=1):
 ind = x>=0
 x[ind]=A0*np.log(x[ind]*B+1.0)
 ind = x<0
 dtemp = (-x[ind])**C
 tempA = -A0*(dtemp+D)/(3*dtemp+D)
 x[ind]=tempA*np.log(abs(x[ind])*B+1.0)

 return x

class TanCarneyIHC(CombinedFilterbank):

 def __init__(self, source, cf):
 CombinedFilterbank.__init__(self, source)
 source = self.get_modified_source()

 ## Saturation
 saturation = FunctionFilterbank(source, saturation_fc,
 A0=0.1, B=2000, C=1.74, D=6.87e-9)
 ## low pass IHC
 ihc = LowPass_IHC(saturation, cf, 3800, 1, 7)
 self.set_output(ihc)

class TanCarneyControl(CombinedFilterbank):
 def __init__(self, source, cf, update_interval, param=None):
 CombinedFilterbank.__init__(self, source)
 source = self.get_modified_source()
 cf = np.atleast_1d(cf)
 samplerate=source.samplerate
 parameters = set_parameters(cf, param)
 ##### Control Path ####
 # band pass filter
 control_coef = Control_Coefficients(cf, samplerate)
 [filt_b,filt_a] = control_coef.return_coefficients(np.zeros((1,len(cf))))
 BP_control = LinearFilterbank(source,filt_b,filt_a)

 # first non linearity of control path
 Acp,Bcp,Ccp=100.,2.5,0.60
 func_NL1_control=lambda x:np.sign(x)*Bcp*np.log(1.+Acp*abs(x)**Ccp)
 NL1_control=FunctionFilterbank(BP_control,func_NL1_control)

 # second non linearity of control path
 asym,s0,x1,s1=7.,8.,5.,3.
 shift = 1./(1.+asym)
 x0 = s0*np.log((1.0/shift-1)/(1+np.exp(x1/s1)))
 func_NL2_control=lambda x:(1.0/(1.0+np.exp(-(x-x0)/s0)*(1.0+np.exp(-(x-x1)/s1)))-shift)*parameters['nlgain']
 NL2_control=FunctionFilterbank(NL1_control,func_NL2_control)

 #control low pass filter (its output will be used to control the signal path)
 gain_lp_con = (2*np.pi*parameters['fc_LP_control'])**3*1.5
 LP_control = LowPass_filter(NL2_control,cf,parameters['fc_LP_control'],gain_lp_con,3)
 #low pass filter for feedback to control band pass (its output will be used to control the control path)
 gain_lp_fb = parameters['fc_LP_fb']*2*np.pi*10
 LP_feed_back = LowPass_filter(LP_control,cf,parameters['fc_LP_fb'],gain_lp_fb,1)

 updater = Filter_Update(BP_control, control_coef) #instantiation of the updater for the control path
 output = ControlFilterbank(LP_control, LP_feed_back, BP_control,
 updater, update_interval) #controler for the band pass filter of the control path

 self.set_output(output)

class TanCarneySignal(CombinedFilterbank):
 def __init__(self, source, cf, update_interval, param=None):

 CombinedFilterbank.__init__(self, source)
 source = self.get_modified_source()
 cf = np.atleast_1d(cf)
 parameters = set_parameters(cf, param)
 samplerate=source.samplerate

 if int(source.samplerate)!=50000:
 warnings.warn('To use the TanCarney cochlear model the sample rate should be 50kHz')

 # band pass filter
 signal_coef = Signal_Coefficients(cf, samplerate,parameters)
 [filt_b,filt_a] = signal_coef.return_coefficients(np.zeros((1,len(cf))))
 BP_signal = LinearFilterbank(source,filt_b,filt_a)

 control_output = TanCarneyControl(source, cf, update_interval, parameters)

 updater = Filter_Update(BP_signal, signal_coef) #instantiation of the updater for the signal path
 output = ControlFilterbank(BP_signal, control_output, BP_signal,
 updater, update_interval) #controler for the band pass filter of the signal path

 self.set_output(output)

[docs]class TanCarney(CombinedFilterbank):
 '''
 Class implementing the nonlinear auditory filterbank model as described in
 Tan, G. and Carney, L.,
 "A phenomenological model for the responses of auditory-nerve
 fibers. II. Nonlinear tuning with a frequency glide", JASA 2003.

 The model consists of a control path and a signal path. The control path
 controls both its own bandwidth via a feedback
 loop and also the bandwidth of the signal path.

 Initialised with arguments:

 ``source``
 Source of the cochlear model.

 ``cf``
 List or array of center frequencies.

 ``update_interval``
 Interval in samples controlling how often the band pass filter of the
 signal pathway is updated. Smaller values are more accurate but
 increase the computation time.

 ``param``
 Dictionary used to overwrite the default parameters given in the
 original paper.
 '''

 def __init__(self, source, cf, update_interval=1, param=None):
 CombinedFilterbank.__init__(self, source)
 source = self.get_modified_source()
 cf = np.asarray(np.atleast_1d(cf))

 parameters=set_parameters(cf,param)

 signal = TanCarneySignal(source, cf, update_interval, parameters)
 ihc = TanCarneyIHC(signal, cf)

 self.set_output(ihc)

 Source code for brian2hears.hrtf.hrtf

from builtins import range
from copy import copy

import numpy as np
from numpy.fft import fft, ifft

from brian2hears.sounds import Sound
from brian2hears.filtering import FIRFilterbank

__all__ = ['HRTF', 'HRTFSet', 'HRTFDatabase',
 'make_coordinates']

[docs]class HRTF(object):
 '''
 Head related transfer function.

 Attributes

 ``impulse_response``
 The pair of impulse responses (as stereo :class:`Sound` objects)
 ``fir``
 The impulse responses in a format suitable for using with
 :class:`FIRFilterbank` (the transpose of ``impulse_response``).
 ``left``, ``right``
 The two HRTFs (mono :class:`Sound` objects)
 ``samplerate``
 The sample rate of the HRTFs.

 Methods

 .. automethod:: apply
 .. automethod:: filterbank

 You can get the number of samples in the impulse response with ``len(hrtf)``.
 '''
 def __init__(self, hrir_l, hrir_r=None):
 if hrir_r is None:
 hrir = hrir_l
 else:
 hrir = Sound((hrir_l, hrir_r), samplerate=hrir_l.samplerate)
 self.samplerate = hrir.samplerate
 self.impulse_response = hrir
 self.left = hrir.left
 self.right = hrir.right

[docs] def apply(self, sound):
 '''
 Returns a stereo :class:`Sound` object formed by applying the pair of
 HRTFs to the mono ``sound`` input. Equivalently, you can write
 ``hrtf(sound)`` for ``hrtf`` an :class:`HRTF` object.
 '''
 # Note we use an FFT based method for applying HRTFs that is
 # mathematically equivalent to using convolution (accurate to 1e-15
 # in practice) and around 100x faster.
 if not sound.nchannels==1:
 raise ValueError('HRTF can only be applied to mono sounds')
 if len(np.unique(np.array([self.samplerate, sound.samplerate],
 dtype=int))) > 1:
 raise ValueError('HRTF and sound samplerates do not match.')
 sound = np.asarray(sound).flatten()
 # Pad left/right/sound with zeros of length max(impulse response length)
 # at the beginning, and at the end so that they are all the same length
 # which should be a power of 2 for efficiency. The reason to pad at
 # the beginning is that the first output samples are not guaranteed to
 # be equal because of the delays in the impulse response, but they
 # exactly equalise after the length of the impulse response, so we just
 # zero pad. The reason for padding at the end is so that for the FFT we
 # can just multiply the arrays, which should have the same shape.
 left = np.asarray(self.left).flatten()
 right =np.asarray(self.right).flatten()
 ir_nmax = max(len(left), len(right))
 nmax = max(ir_nmax, len(sound))+ir_nmax
 nmax = 2**int(np.ceil(np.log2(nmax)))
 leftpad = np.hstack((left, np.zeros(nmax-len(left))))
 rightpad = np.hstack((right, np.zeros(nmax-len(right))))
 soundpad = np.hstack((np.zeros(ir_nmax),
 sound,
 np.zeros(nmax-ir_nmax-len(sound))))
 # Compute FFTs, multiply and compute IFFT
 left_fft = fft(leftpad, n=nmax)
 right_fft = fft(rightpad, n=nmax)
 sound_fft = fft(soundpad, n=nmax)
 left_sound_fft = left_fft*sound_fft
 right_sound_fft = right_fft*sound_fft
 left_sound = ifft(left_sound_fft).real
 right_sound = ifft(right_sound_fft).real
 # finally, we take only the unpadded parts of these
 left_sound = left_sound[ir_nmax:ir_nmax+len(sound)]
 right_sound = right_sound[ir_nmax:ir_nmax+len(sound)]
 return Sound((left_sound, right_sound), samplerate=self.samplerate)

 __call__ = apply

 def get_fir(self):
 return np.array(self.impulse_response.T, copy=True)
 fir = property(fget=get_fir)

[docs] def filterbank(self, source, **kwds):
 '''
 Returns an :class:`FIRFilterbank` object that can be used to apply
 the HRTF as part of a chain of filterbanks.
 '''
 return FIRFilterbank(source, self.fir, **kwds)

 def __len__(self):
 return self.impulse_response.shape[0]

[docs]def make_coordinates(**kwds):
 '''
 Creates a numpy record array from the keywords passed to the function.
 Each keyword/value pair should be the name of the coordinate the array of
 values of that coordinate for each location.
 Returns a numpy record array. For example::

 coords = make_coordinates(azimuth=[0, 30, 60, 0, 30, 60],
 elevation=[0, 0, 0, 30, 30, 30])
 print coords['azimuth']
 '''
 dtype = [(name, float) for name in kwds.keys()]
 n = len(next(iter(kwds.values())))
 x = np.zeros(n, dtype=dtype)
 for name, values in kwds.items():
 x[name] = values
 return x

[docs]class HRTFSet(object):
 '''
 A collection of HRTFs, typically for a single individual.

 Normally this object is created automatically by an :class:`HRTFDatabase`.

 Attributes

 ``hrtf``
 A list of ``HRTF`` objects for each index.
 ``num_indices``
 The number of HRTF locations. You can also use ``len(hrtfset)``.
 ``num_samples``
 The sample length of each HRTF.
 ``fir_serial``, ``fir_interleaved``
 The impulse responses in a format suitable for using with
 :class:`FIRFilterbank`, in serial (LLLLL...RRRRR....) or interleaved
 (LRLRLR...).

 Methods

 .. automethod:: subset
 .. automethod:: filterbank
 .. automethod:: get_index

 You can access an HRTF by index via ``hrtfset[index]``, or
 by its coordinates via ``hrtfset(coord1=val1, coord2=val2)``.

 Initialisation

 ``data``
 An array of shape (2, num_indices, num_samples) where data[0,:,:] is
 the left ear and data[1,:,:] is the right ear, num_indices is the number
 of HRTFs for each ear, and num_samples is the length of the HRTF.
 ``samplerate``
 The sample rate for the HRTFs (should have units of Hz).
 ``coordinates``
 A record array of length ``num_indices`` giving the coordinates of each
 HRTF. You can use :func:`make_coordinates` to help with this.
 '''
 def __init__(self, data, samplerate, coordinates):
 self.data = data
 self.samplerate = samplerate
 self.coordinates = coordinates
 self.hrtf = []
 for i in range(self.num_indices):
 l = Sound(self.data[0, i, :], samplerate=self.samplerate)
 r = Sound(self.data[1, i, :], samplerate=self.samplerate)
 self.hrtf.append(HRTF(l, r))

 def __getitem__(self, key):
 return self.hrtf[key]

[docs] def get_index(self, **kwds):
 '''
 Return the index of the HRTF with the coords specified by keyword.
 '''
 I = np.ones(self.num_indices, dtype=bool)
 for key, value in kwds.items():
 I = np.logical_and(I, abs(self.coordinates[key]-value)<1e-10)
 indices = I.nonzero()[0]
 if len(indices)==0:
 raise IndexError('No HRTF exists with those coordinates')
 if len(indices)>1:
 raise IndexError('More than one HRTF exists with those coordinates')
 return indices[0]

 def __call__(self, **kwds):
 return self.hrtf[self.get_index(**kwds)]

[docs] def subset(self, condition):
 '''
 Generates the subset of the set of HRTFs whose coordinates satisfy
 the ``condition``. This should be one of: a boolean array of
 length the number of HRTFs in the set, with values
 of True/False to indicate if the corresponding HRTF should be included
 or not; an integer array with the indices of the HRTFs to keep; or a
 function whose argument names are
 names of the parameters of the coordinate system, e.g.
 ``condition=lambda azim:azim<pi/2``.
 '''
 if callable(condition):
 fcode = condition.__code__
 fvars = fcode.co_varnames
 ns = dict((name, self.coordinates[name]) for name in fvars)
 try:
 I = condition(**ns)
 I = I.nonzero()[0]
 except:
 I = False
 if isinstance(I, bool): # vector-based calculation doesn't work
 n = len(ns[fvars[0]])
 I = np.array([condition(**dict((name, ns[name][j]) for name in fvars)) for j in range(n)])
 I = I.nonzero()[0]
 else:
 if condition.dtype==bool:
 I = condition.nonzero()[0]
 else:
 I = condition
 hrtf = [self.hrtf[i] for i in I]
 coords = self.coordinates[I]
 data = self.data[:, I, :]
 obj = copy(self)
 obj.hrtf = hrtf
 obj.coordinates = coords
 obj.data = data
 return obj

 def __len__(self):
 return self.num_indices

 @property
 def num_indices(self):
 return self.data.shape[1]

 @property
 def num_samples(self):
 return self.data.shape[2]

 @property
 def fir_serial(self):
 return np.reshape(self.data, (self.num_indices*2, self.num_samples))

 @property
 def fir_interleaved(self):
 fir = np.empty((self.num_indices*2, self.num_samples))
 fir[::2, :] = self.data[0, :, :]
 fir[1::2, :] = self.data[1, :, :]
 return fir

[docs] def filterbank(self, source, interleaved=False, **kwds):
 '''
 Returns an :class:`FIRFilterbank` object which applies all of the HRTFs
 in the set. If ``interleaved=False`` then
 the channels are arranged in the order LLLL...RRRR..., otherwise they
 are arranged in the order LRLRLR....
 '''
 if interleaved:
 fir = self.fir_interleaved
 else:
 fir = self.fir_serial
 return FIRFilterbank(source, fir, **kwds)

[docs]class HRTFDatabase(object):
 '''
 Base class for databases of HRTFs

 Should have an attribute 'subjects' giving a list of available subjects,
 and a method ``load_subject(subject)`` which returns an ``HRTFSet`` for that
 subject.

 The initialiser should take (optional) keywords:

 ``samplerate``
 The intended samplerate (resampling will be used if it is wrong). If
 left unset, the natural samplerate of the data set will be used.
 '''
 def __init__(self, samplerate=None):
 raise NotImplementedError

 def load_subject(self, subject):
 raise NotImplementedError

 Source code for brian2hears.hrtf.ircam

import os
import re
from glob import glob

from scipy.io import loadmat # NOTE: this requires scipy 0.7+
import numpy as np

from brian2 import kHz

from .hrtf import *

__all__ = ['IRCAM_LISTEN']

[docs]class IRCAM_LISTEN(HRTFDatabase):
 '''
 :class:`HRTFDatabase` for the IRCAM LISTEN public HRTF database.

 For details on the database, see the
 `website <http://recherche.ircam.fr/equipes/salles/listen/>`__.

 The database object can be initialised with the following arguments:

 ``basedir=None``
 The directory where the database has been downloaded and extracted,
 e.g. ``r'D:\HRTF\IRCAM'``. Multiple directories in a list can be provided as well (e.g IRCAM and IRCAM New).
 Note that if you set this to None, it will use the environment variable IRCAM_LISTEN if that has been set.
 ``compensated=False``
 Whether to use the raw or compensated impulse responses.
 ``samplerate=None``
 If specified, you can resample the impulse responses to a different
 samplerate, otherwise uses the default 44.1 kHz.

 The coordinates are pairs ``(azim, elev)`` where ``azim`` ranges from 0
 to 345 degrees in steps of 15 degrees, and elev ranges from -45 to 90 in
 steps of 15 degrees. After loading the database, the attribute 'subjects' gives all the subjects number that were detected as installed.

 Obtaining the database

 The database can be downloaded
 `here <http://recherche.ircam.fr/equipes/salles/listen/download.html>`__.
 Each subject archive should be extracted to a folder (e.g. IRCAM) with the
 names of the subject, e.g. IRCAM/IRC_1002, etc.
 '''
 def __init__(self, basedir=None, compensated=False, samplerate=None):
 if basedir is None:
 basedir = os.getenv('IRCAM_LISTEN')
 if basedir is None:
 raise ValueError("You need to provide a directory for the IRCAM LISTEN database, or set the environment "
 "variable IRCAM_LISTEN to point to it.")
 if not isinstance(basedir, (list, tuple)):
 basedir = [basedir]
 self.basedir = basedir
 self.compensated = compensated
 names = []
 for basedir in self.basedir:
 names += glob(os.path.join(basedir, 'IRC_*'))
 splitnames = [os.path.split(name) for name in names]

 p = re.compile('IRC_\d{4,4}')
 self.subjects = [int(name[4:8]) for base, name in splitnames
 if not (p.match(name[-8:]) is None)]
 if samplerate is not None:
 raise ValueError('Custom samplerate not supported.')
 self.samplerate = samplerate

 def load_subject(self, subject, rounddot5 = False):

 subject = str(subject)
 if subject[0] == '3':
 # this is the case only for stuffed animals recordings
 # IRC_30..
 samplerate = 192*kHz
 else:
 samplerate = 44.1*kHz
 ok = False
 k = 0
 while k < len(self.basedir) and not ok:
 try:
 filename = os.path.join(self.basedir[k], 'IRC_' + subject)
 if self.compensated:
 filename = os.path.join(filename, 'COMPENSATED/MAT/HRIR/IRC_' + subject + '_C_HRIR.mat')
 else:
 filename = os.path.join(filename, 'RAW/MAT/HRIR/IRC_' + subject + '_R_HRIR.mat')
 m = loadmat(filename, struct_as_record=True)
 ok = True
 except IOError:
 ok = False
 k += 1
 if not ok:
 raise IOError("Couldn't find the HRTF files for subject "+str(subject))

 if 'l_hrir_S' in m.keys(): # RAW DATA
 affix = '_hrir_S'
 else: # COMPENSATED DATA
 affix = '_eq_hrir_S'
 l, r = m['l' + affix], m['r' + affix]

 azim = l['azim_v'][0][0][:, 0]
 elev = l['elev_v'][0][0][:, 0]
 if len(azim) == len(elev) and len(azim) == 1:
 # it is the case with IRCAM_New db
 # - the coordinates are 1xN instead of Nx1
 # - some measures that should be at the same elevation are
 # at very close but different elevations (7.47
 # vs. 7.5). This is annoying for interpolation. Hence I
 # allow one to round the elevations
 conv = lambda x : x
 if rounddot5:
 conv = lambda x: np.round(2*x)/2
 azim = conv(l['azim_v'][0][0][0, :])
 elev = l['elev_v'][0][0][0, :]
 coords = make_coordinates(azim=azim, elev=elev)
 l = l['content_m'][0][0]
 r = r['content_m'][0][0]
 # self.data has shape (num_ears=2, num_indices, hrir_length)
 data = np.vstack((np.reshape(l, (1,) + l.shape),
 np.reshape(r, (1,) + r.shape)))
 hrtfset = HRTFSet(data, samplerate, coords)
 hrtfset.name = 'IRCAM_'+subject
 return hrtfset

 Source code for brian2hears.hrtf.itd

import numpy as np

from brian2 import metre, second, ms, usecond

from brian2hears.prefs import get_samplerate
from brian2hears.filtering.fractionaldelay import FractionalDelay
from brian2hears.sounds import silence

from .hrtf import *

__all__ = ['HeadlessDatabase']

speed_of_sound_in_air = 343.2*metre/second

[docs]class HeadlessDatabase(HRTFDatabase):
 '''
 Database for creating HRTFSet with artificial interaural time-differences

 Initialisation keywords:

 ``n``, ``azim_max``, ``diameter``
 Specify the ITDs for two ears separated by distance ``diameter`` with
 no head. ITDs corresponding to ``n`` angles equally spaced between
 ``-azim_max`` and ``azim_max`` are used. The default diameter is that
 which gives the maximum ITD as 650 microseconds. The ITDs are computed
 with the formula ``diameter*sin(azim)/speed_of_sound_in_air``. In this
 case, the generated :class:`HRTFSet` will have coordinates of ``azim``
 and ``itd``.
 ``itd``
 Instead of specifying the keywords above, just give the ITDs directly.
 In this case, the generated :class:`HRTFSet` will have coordinates of
 ``itd`` only.
 ``fractional_itds=False``
 Set this to ``True`` to allow ITDs with a fractional multiple of the
 timestep ``1/samplerate``. Note that the filters used to do this are
 not perfect and so this will introduce a small amount of numerical
 error, and so shouldn't be used unless this level of timing precision
 is required. See `.FractionalDelay` for more details.

 To get the HRTFSet, the simplest thing to do is just::

 hrtfset = HeadlessDatabase(13).load_subject()

 The generated ITDs can be returned using the ``itd`` attribute of the
 :class:`HeadlessDatabase` object.

 If ``fractional_itds=False`` then
 Note that the delays induced in the left and right channels are not
 symmetric as making them so wastes half the samplerate (if the delay to
 the left channel is itd/2 and the delay to the right channel is -itd/2).
 Instead, for each channel either the left channel delay is 0 and the right
 channel delay is -itd (if itd<0) or the left channel delay is itd and the
 right channel delay is 0 (if itd>0).

 If ``fractional_itds=True`` then delays in the left and right channels will
 be symmetric around a global offset of ``delay_offset``.
 '''
 def __init__(self, n=None, azim_max=np.pi/2,
 diameter=speed_of_sound_in_air*650*usecond,
 itd=None, samplerate=None, fractional_itds=False):
 if itd is None:
 azim = np.linspace(-azim_max, azim_max, n)
 itd = diameter*np.sin(azim)/speed_of_sound_in_air
 coords = make_coordinates(azim=azim, itd=itd)
 else:
 coords = make_coordinates(itd=itd)
 self.itd = itd
 samplerate = self.samplerate = get_samplerate(samplerate)
 if not fractional_itds:
 dl = itd.copy()
 dr = -itd
 dl[dl<0] = 0
 dr[dr<0] = 0
 dl = np.array(np.rint(dl*samplerate), dtype=int)
 dr = np.array(np.rint(dr*samplerate), dtype=int)
 idxmax = max(np.amax(dl), np.amax(dr))
 data = np.zeros((2, len(itd), idxmax+1))
 data[0, np.arange(len(itd)), dl] = 1
 data[1, np.arange(len(itd)), dr] = 1
 else:
 delays = np.hstack((itd/2, -itd/2))
 fd = FractionalDelay(silence(1*ms, samplerate=samplerate), delays)
 ir = fd.impulse_response
 data = np.zeros((2, len(itd), fd.filter_length))
 data[0, :, :] = ir[:len(itd), :]
 data[1, :, :] = ir[len(itd):, :]
 self.delay_offset = fd.delay_offset
 self.hrtfset = HRTFSet(data, samplerate, coords)
 self.hrtfset.name = 'ITDDatabaseSubject'
 self.subjects = ['0']

 def load_subject(self, subject='0'):
 return self.hrtfset

Computation times

00:06.374 total execution time for auto_examples files:

	Artificial Vowels (artificial_vowels.py)

	00:06.374

	0.0 MB

	IIR filterbank (IIRfilterbank.py)

	00:00.000

	0.0 MB

	Approximate Gammatone filters (approximate_gammatone.py)

	00:00.000

	0.0 MB

	Butterworth filters (butterworth.py)

	00:00.000

	0.0 MB

	Cochleagram (cochleagram.py)

	00:00.000

	0.0 MB

	Cochlear models (cochlear_models.py)

	00:00.000

	0.0 MB

	Compressive Gammachirp filter (DCGC) (dcgc.py)

	00:00.000

	0.0 MB

	Dual resonance nonlinear filter (DRNL) (drnl.py)

	00:00.000

	0.0 MB

	Gammatone filters (gammatone.py)

	00:00.000

	0.0 MB

	HRTFs (ircam_hrtf.py)

	00:00.000

	0.0 MB

	Linear Gammachirp filters (linear_gammachirp.py)

	00:00.000

	0.0 MB

	Logarithmic Gammachirp filters (log_gammachirp.py)

	00:00.000

	0.0 MB

	Online computation (online_computation.py)

	00:00.000

	0.0 MB

	Auditory nerve fibre model (simple_anf.py)

	00:00.000

	0.0 MB

	Sound localisation model (sound_localisation_model.py)

	00:00.000

	0.0 MB

	Sounds (sounds.py)

	00:00.000

	0.0 MB

	Time varying filter (1) (time_varying_filter1.py)

	00:00.000

	0.0 MB

	Time varying filter (2) (time_varying_filter2.py)

	00:00.000

	0.0 MB

Computation times

00:28.452 total execution time for auto_examples_tan_carney_2003 files:

	Response area and phase response in the Tan&Carney model (tan_carney_Fig11.py)

	00:28.452

	0.0 MB

	CF-dependence of compressive nonlinearity in the Tan&Carney model (tan_carney_Fig7.py)

	00:00.000

	0.0 MB

	Spiking output of the Tan&Carney model (tan_carney_simple_test.py)

	00:00.000

	0.0 MB

 _images/auditory-nerve-fibre-rasterplot.png
Neuron number

3000

2500

2000

1500

1000

500

20

40

Time (ms)

60

80

100

_images/brianhearslogo.png

_images/inheritance-b5fb1277570e8b7acca06fa45d3d6d6362b946b3.png
ApproximateGammatone

AsymmetricCompensation

HeadlessDatabase

Butterworth

HRTFDatabase
IRCAM_LISTEN

Basesound] Sound

/

‘ ndarray Linearfilterbank

Cascade

Gammatone

UIRFilterbank

LogGammachirp

LowPass,

Bufferable

DcGe

CombinedFilterbank | DRNL

/;n(mlﬁl(erbank TanCamey

S

[Fiterbank

DoNothingFilterbank LinearGaborchirp

‘ FIRFilterbank || LinearGammachirp

Functionfilterbank |——»] SumFilterbank

Interleave

Restructurefilterbank

_images/sphx_glr_IIRfilterbank_thumb.png

_images/cochleagram.png
Frequency (Hz)

20000

20

f " M

("

S S =Y

38 40 a2 44 a6 a8
Time (ms)

_images/hrtfset_response_plot.png
0 o T
1 W
- [{1 -

L — NI] —

_images/sphx_glr_approximate_gammatone_thumb.png

_images/sphx_glr_artificial_vowels_thumb.png
g

§§88¢

e ooy

_images/sphx_glr_butterworth_thumb.png

nav.xhtml

 Table of Contents

 		
 Brian 2 hears

 		
 Introduction

 		
 Sounds

 		
 Filter chains

 		
 Connecting with Brian

 		
 Plotting

 		
 Online computation

 		
 Buffering interface

 		
 Library

 		
 Head-related transfer functions

 		
 Reference documentation

 		
 Examples

_images/sphx_glr_dcgc_thumb.png

_images/sphx_glr_drnl_thumb.png

_images/sphx_glr_cochleagram_thumb.png
100 1500 2000 2500 300 300 000

_images/sphx_glr_cochlear_models_thumb.png

_images/sphx_glr_linear_gammachirp_thumb.png

_images/sphx_glr_log_gammachirp_thumb.png

_images/sphx_glr_gammatone_thumb.png
Cochieogram

H
H
H

) E3
Time (ms)

_images/sphx_glr_ircam_hrtf_thumb.png

_images/sphx_glr_online_computation_thumb.png
s

000

oours

oons0

oons

oo0s0

oo02s

o000

T w0 000 760 10600 12300 15600 17300 20000
‘Frequency (H2)

_images/sphx_glr_simple_anf_thumb.png
000
2500
1500
100

_images/sphx_glr_sound_localisation_model_thumb.png
Elevaton (seg)

B0 a0
Azmuth (deg)

EY

_images/sphx_glr_tan_carney_Fig7_thumb.png
s of AC companent o Fout

so0ne
ook

)

L)
It signal SPL (d8)

e

60

_images/sphx_glr_tan_carney_simple_test_thumb.png
Click responses.

oY TS S—r—

Pesk 59L=120.0d8 591

s 3) 5 E)

“Time (msec)

ES

_images/sphx_glr_sounds_thumb.png
03 0605 0010 0015 000 00 02 04 06 08
Time (s)

_images/sphx_glr_tan_carney_Fig11_thumb.png
Prase Re908 (i racians)

—oam
20 —am
150 — woaw
om
£ — soam
&
= —
%o o meo %0 w0 w0 won
o
0so — 0am
0 — som
—om
000 Y
050
T %o o mw 0 mw w0 w0 00

Frequency (H2)

_images/sphx_glr_time_varying_filter1_thumb.png

_images/sphx_glr_time_varying_filter2_thumb.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/down.png

_static/broken_example.png

_static/plus.png

_static/minus.png

_static/no_image.png

_static/up-pressed.png

_static/up.png

